As an important branch of photoacoustic microscopy, optical-resolution photoacoustic microscopy suffers from limited depth of field due to the strongly focused laser beam. In this work, a 3D information fusion algorithm based on 3D stationary wavelet transform and joint weighted evaluation optimization is proposed to fuse multi-focus photoacoustic data to achieve large-volumetric and high-resolution 3D imaging. First, a three-dimensional stationary wavelet transform was performed on the multi-focus data to obtain eight wavelet coefficients. Differential evolution algorithm based on joint weighted evaluation was then employed to optimize the block size of division for each wavelet coefficient. Corresponding sub-coefficients of multi-focus 3D data were fused with the proposed fusion rule utilizing standard deviation for focus detection. Finally, photoacoustic microscopy with large depth of field can be achieved by applying the inverse stationary wavelet transform on the 8 fused sub-coefficients. The fusion result of multi-focus vertically tilted fiber shows that the depth of field of optical-resolution photoacoustic microscopy is doubled without sacrificing lateral resolution via the proposed method. The effectiveness of the proposed method was verified through the fusion results of multi-focus vessel data.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.