Photonic band-gap structures are of interest both from fundamental and practical points of view. They are known to enhance nonlinear, magnetooptical, electrooptical and other effects in the medium when frequency is near photonic band gap [1, 2]. Second harmonic generation is observed when phase-matching conditions are fulfilled,
i.e. phase velocities of first and second harmonics are equal. Homogeneous media have their own material dispersion, so phase mismatch always presents. Anisotropy in some materials can compensate dispersion in specific directions, and such nonlinear crystals are commonly used in lasers and parametric light generators [3]. Photonic crystals are attractive for practical applications because of a large diversity of their dispersion properties comparing to homogeneous media. Varying photonic crystal parameters, such as lattice period, filling factor and refractive indices of media, one can manipulate
its band structure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.