One of the main challenges in space communication has always been attempting to meet the demanding requirement for greater capacity and routing complexity associated with Very High Throughput Satellite (VHTS) missions. Increased amounts of hardware associated with such high capacity mission pushes the payload towards limitation in mass, power consumption, thermal dissipation and accommodation on the spacecraft. This paper describes activities and the final demonstration results of the OPTIMA project. OPTIMA is funded by the EU commission under Horizon 2020, COMPET-2-2016, maturing satellite communication technologies. The objective of the OPTIMA project was to demonstrate and validate the concept of significantly improving the SWaP of VHTS payloads by defining and developing a photonic payload hardware demonstrator based on various photonic equipment building blocks and testing the demonstrator to TRL 6. Since photonic technology is not yet mature for use in the space environment, the OPTIMA project developed and environmentally tested to TRL 6 the necessary photonic devices and hardware payload equipment. Benefits offered from the use of photonic technology in VHTS payload architectures have shown significant mass saving. This comes not only from reduced equipment unit mass but also from a lower number of units required as a consequence of implementing photonic technology. There are also additional benefits, including reduced DC power consumption and improved power dissipation. The OPTIMA demonstrator is based on Ka-band frequency; however, a holistic approach has been taken when deriving equipment specifications by considering VHTS payload requirements as a whole to ensure the demonstrator will lead to technology developments that can easily scale up in terms of frequencies (such as Q/V band) and use in a wide range of VHTS payload architectures. During the early part of the OPTIMA project, the specification of each building block has been established with emphasis on RF and optical performance, mass, footprint, power consumption, power dissipation and cost. The OPTIMA project aims to provide a strong initial impulse to the photonic payloads for telecommunication satellites by focusing the efforts of various industrial and academic actors from the European photonic and space landscape towards the concrete goal of demonstrating the validity of the photonic payload concept.
Advanced technologies to implement on-chip monitoring and feedback control operations are required to make silicon photonics scale to large-scale-of-integration. Transparent detectors and energy saving actuators are key ingredients of this paradigm. On-chip detectors are required to be minimally invasive in order to allow their integration in key spots of the circuit, thus easing control operation through the partitioning of complex architectures in smaller cluster of devices and the realization of local feedback control loops. Non volatile integrated actuators, which are reversible switching devices that can maintain the state without the need of “always on” power dissipation, are also needed to reduce the power consumption required by tuning, reconfiguration and stabilization operations. Addressing these issues, in this contribution we report on the performance of a recently developed transparent detector, named ContacLess Integrated Photonic Probe (CLIPP), that can monitor in line the intensity of the light in silicon waveguides without introducing any photon absorption in excess to the waveguide propagation loss. A systematic characterization of the CLIPP detector is here presented, specifically addressing the dependence of the CLIPP performance on the waveguide geometry and on the polarization and wavelength of the light. Concerning the development of non-volatile integrated actuators, we demonstrate the possibility to manipulate the light transmission in silicon waveguides by electrochemical insertion of mobile ions in a mixed ionic and electronic conductor (MIEC) used as upper cladding of a silicon waveguide. A finely controllable and reversible change of the imaginary part of the refractive index of the MIEC film is exploited to trim the loss of a silicon waveguide and to modify the frequency response of a silicon microring resonator.
The complexity scaling of silicon photonics circuits is raising novel needs related to control. Reconfigurable
architectures need fast, accurate and robust procedures for the tuning and stabilization of their working point,
counteracting temperature drifts originated by environmental fluctuations and mutual thermal crosstalk from surrounding
integrated devices. In this contribution, we report on our recent achievements on the automated tuning, control and
stabilization of silicon photonics architectures. The proposed control strategy exploits transparent integrated detectors to
monitor non-invasively the light propagating in the silicon waveguides in key spots of the circuit. Local monitoring
enables the partitioning of complex architectures in small photonic cells that can be easily tuned and controlled, with
need for neither preliminary circuit calibration nor global optimization algorithms. The ability to monitor the Quality Of
of Transmission (QoT) of the optical paths in Photonic Integrated Circuits (PICs) is also demonstrated with the use of
channel labelling and non-invasive light monitoring. Several examples of applications are presented that include the
automatic reconfiguration and feedback controlled stabilization of an 8×8 switch fabric based on Mach-Zehnder
interferometers (MZIs) and the realization of a wavelength locking platform enabling feedback-control of silicon
microring resonators (MRRs) for the realization of a 4×10 Gbit/s wavelength-division-multiplexing transmitter. The
effectiveness and the robustness of the proposed approach for tuning and stabilization of the presented architectures is
demonstrated by showing that no significant performance degradation is observed under uncooled operation for the
silicon chip.
The interface between the core and the cladding of optical waveguides exhibits a number of physical phenomena that do
not occur in the bulk of the material. For this reason, the behavior of nanoscale devices is expected to be conditioned, or
even dominated, by the nature of their surfaces. Roughness-induced losses, backscattering and crosstalk between
adjacent waveguides, together with surface states absorption impact on the optical and electrical properties of the
waveguides must be considered in the design of any integrated optoelectronic device. The detrimental effects and the
possibility of their exploitation are carefully reviewed, presenting in particular the ContacLess Integrated Photonic Probe
to be used as transparent power monitor.
We demonstrate non-invasive light observation in silicon photonics with a ContactLess Integrated Photonics Probe
(CLIPP), neither introducing appreciable perturbations of the optical field nor requiring photon tapping from the
waveguide. Light monitoring with sensitivity down to -30 dBm, across 40 dB dynamic range, in few tens of microseconds,
on TE and TM polarizations, and on monomode and multimode waveguides is achieved. Moreover, we show wavelength
tuning, locking and swapping of high-Q resonators assisted by the CLIPP that is integrated inside the microring. CLIPP
readout and feedback control is managed by a CMOS microelectronic circuit bridged to the silicon photonic chip.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.