Photonics integration is a key technology for realizing large-scale photonic quantum information processing. Here, we demonstrate the largest reconfigurable photonic processor based on low-loss silicon nitride waveguide networks for InGaAs quantum dots to date. The 20-mode processor is used for quantum information processing with demultiplexed single photons from a quantum dots source which are detected at the output using single photon detectors. In this talk, we will present the newest results of the system using our programmable quantum photonic processors. Furthermore, we show the challenges of scaling up quantum photonic computers and the range of potential applications and use cases.
Photonics integration is a key technology for realizing large-scale photonic quantum information processing. We demonstrate state-of-art reconfigurable photonic processors based on low-loss silicon nitride waveguide networks. We present the science behind such a processor, which consists of a large mesh of integrated reconfigurable Mach Zehnder interferometers. In this talk, we will present the newest results of the current generation of our programmable quantum photonic processors obtained by classical as well as quantum optical characterization. Furthermore, we show the challenges of scaling up quantum photonic processors and the range of potential applications of large-scale quantum information processing those will enable.
Photonics integration is a key technology for realizing large-scale photonic quantum information processing. We demonstrate state-of-art reconfigurable photonic processors based on low-loss silicon nitride waveguide networks. We present the science behind such a processor, which consists of a large mesh of integrated reconfigurable Mach Zehnder interferometers. In this talk, we will present the newest results of the current generation of our programmable quantum photonic processors obtained by classical as well as quantum optical characterization. Furthermore, we show the challenges of scaling up quantum photonic processors and the range of potential applications of large-scale quantum information processing those will enable.
We present an integrated optical wavelength meter based on a Si3N4/SiO2 micro ring resonator (operating over a free spectral range of ≈ 2.6 nm) whose output response is immune to temperature changes. The wavelength meter readout is performed by a neural network and a non-linear optimization algorithm. This novel approach ensures a high wavelength estimation precision (≈ 50 pm). We observe a long-term reproducibility of the wavelength meter response over a time interval of one week. We investigate the influence of the ambient temperature on the estimated wavelength. We observe an immunity of the displayed output wavelength to temperature changes of up to several degrees. The temperature-drift immunity appears to be caused by deviations from the theoretically expected (perfect) transmission function of a ring resonator, i.e., caused by deviations that are usually undesired in spectroscopic devices.
We present for the first time second harmonic generation in amorphous stoichiometric Si3N4 waveguides grown via low pressure chemical vapor deposition. An effective second-order susceptibility (χ (2)) is established via the coherent photogalvanic effect. A waveguide was designed to phase match a horizontally (parallel to the waveguide width) polarized hybrid EH00 mode at 1064 nm with the higher-order hybrid transverse EH02 mode at 532 nm. A mode-locked laser delivering 6.2-ps pulses at 1064 nm with a repetition rate of 20 MHz was used as pump. When pumped with a constant average power, it was found that the photoinduced χ (2) is established over a time of the order of 1000 s in as-manufactured waveguides, during which the second harmonic signal grows from below noise to a saturation value. The life-time of the photoinduced χ (2) is at least a week. In steady state, we obtain a maximum conversion efficiency close to 0.4% for an average pump power of 13 mW inside the waveguide. The effective second-order susceptibility is found to be 8.6 pm/V.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.