In this paper, we present a method for measuring the focal length of large aperture lenses using reflective computergenerated hologram (CGH). The CGH is designed to emulate the properties of a large aperture retrosphere through diffraction when performing null test of a lens with an interferometer. To validate this test approach, we designed and fabricated a 450 mm × 450 mm reflective CGH specifically for testing the 440 mm × 440 mm spatial filter lenses with a focal length of 31984.222 mm (@ 632.8 nm). Experiments and error analysis were carried out. The results show that the CGH test approach features high accuracy and good repeatability.
The transmitted wavefront mid-spatial-frequency(MSF) errors of spherical lens has a great influence on the quality of the transmitted beam. Aiming at the problems of poor convergence precision and low convergence efficiency in mid-spatial frequency errors polishing of large square spherical lenses, this paper proposes a mid-spatial-frequency errors correction technology by using full-aperture rigid polishing combined with numerically controlled sub-aperture smooth polishing. In the full-aperture polishing stage, the surface shape distribution that is conducive to subsequent sub-aperture polishing is obtained through radius compensation technology to reduce the sudden change of surface shape in the corner area of the component. The more rigid polishing pad is used to smooth the whole surface then, so that the component has better MSF errors condition before the sub-aperture high-precision surface correction. In the stage of small tool CNC polishing, the transmission structure and mass distribution of the polishing disc are optimized, and the ideal transmission characteristics and size parameters of the polishing disc are obtained through mechanical simulation analysis to reduce the overturning moment of the polishing disc when the direction changes suddenly. This optimization also improves the pressure distribution of the polishing interface. Stability, a flexible polishing disc combined with a high dispersion polishing slurry is used to correct the surface errors. The concentration of the polishing slurry is optimized and the supply method is well changed. So when the surface shape errors convergence process is more efficient and controllable, it will not cause the deterioration of the MSF errors. The smooth tool is applied in the last stage with reducing the temperature change of the polishing interface. All these measures are aimed to increase the stability of smooth polishing and to achieve high-efficiency, high-precision and stable convergence of MSF errors. The experimental verification was carried out on four square spherical lenses with a size of 440mm×440mm. The final PSD1:RMS values have all reached within 1.8nm. Additionally the overall processing time has been greatly shortened.
In this paper, we present a method of using computer-generated hologram (CGH) to measure the mid-spatial frequency error of large aperture lenses. To validate this test approach, we designed and fabricated a 450 mm × 450 mm reflective CGH for testing the 440 mm × 440 mm spatial filter lens with a focal length of 32500 mm. In our experiment, both the 0th and 1st order diffraction wavefront of CGH were measured, and the 0th order diffraction wavefront was used to calibrate the substrate error. The mid-spatial frequency error caused by the CGH fabrication errors were evaluated using the binary linear grating model and power spectral density theory (PSD). Experimental results and error analysis indicate that the measurement accuracy of PSD1 is ~0.9 nm RMS, which means the CGH test approach can be used to measure the mid-spatial frequency error of large aperture lenses.
We present a method of using computer-generated hologram (CGH) to measure the radius of curvature of large
aperture long-focal-length lens. In this method, a large aperture transmission CGH is used as a transmission sphere to
generate the test and reference wavefronts by means of diffraction. To verify the feasiblity of this method, a 450 mm ×
450 mm transmission CGH is designed and fabricated for measuring the radius of 440 mm × 440 mm spatial filter lens.
Experimental results and error analysis show that the CGH test method features high accuracy and good repeatability.
Automatic measurement of single points schema by coordinate measuring machine(CMM) is used to measure the Ultra-Long curvature radius of spherical optical element. The removal quantity of each measuring point can be calculated through contrasting the measure value and the theoretical value. A removal model of spherical optical element polishing is established based on Preston equation, and the required machining parameters are predicted by removal simulation in MATLAB. A processing test on a fused silicon with an aperture of 440mm×440mm was performed and the result shows that the model is effective in Ultra-Long curvature radius control of spherical optical element during full aperture polishing.
This article mainly take the research in controlling the parallelism of the Φ200mm×10mm sapphire window during the polishing fabrication. First, in the period of full aperture polishing by adjusting the polishing parameters ,the parallelism of the sapphire window conversed to the level of below 3", then we took the sub-aperture ion-beam polishing technique to make the further convergence of the parallelism, in this precise polishing stage, with the ion-beam figuring machine IBF600, the parallelism error was converted to the surface tilt error map ,through the proper choice of the removal function and dwell time calculation, the thin sapphire window’s parallelism converged to subsecond accuracy which satisfied the application requirement of this element
For large-scale high-power laser devices, the transmitted wavefront gradient root mean square (GRMS) is one of the most important indexes for evaluating the low-frequency distortion of spherical lenses. In this paper, for the low-frequency error index requirement of large-diameter spatial filter lens, a conformed polishing method based on composite tool is proposed in the spherical CCOS polishing stage. Based on the detection results of the optical components, the GRMS distribution is separated by low-pass filtering, and the high value of GRMS is partitioned by K-means algorithm to determine the polishing path and dwelling time. A composite conformed polishing tool is designed and the simulation analysis of the polishing tool structure and polishing stress distribution are carried out to optimize the parameters, in order to obtain an ideal GRMS convergence removal function. After experiments and production verifications of several 440×440 sized spatial filter lenses, the results show that the GRMS can be quickly converged below 7nm/cm, and the convergence rate is improved by about 50% compared with the traditional CNC polishing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.