
 

 
 

 

 

 

YOLO-Ti: an efficient object detection approach for tiny facial 

markers 

Ying Li, Dongdong Weng, Zeyu Tian, Jing Hou, Zihao Li 

Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and 

Photonics, Beijing Institute of Technology, Beijing 100081, China 

ABSTRACT 

In this paper, an efficient object detection method YOLO-Ti is proposed to detect tiny facial markers. Our study is driven 

by the practical requirements of 3D face modeling, requiring the incorporation of as many facial features as possible for 

reference. This research can even provide information for facial expression recognition and joint deformation. To 

achieve this, we first present a feature fusion module called Cross-BiFPN, which incorporates additional cross-

connecting branches between different network layers to utilize low-level features more effectively. Secondly, we add a 

high-resolution detection head and attention module to the YOLOv8 model to improve the ability of detecting tiny 

objects, while at the same time ensuring the lightweight detection model by reducing redundant network layers. Thirdly, 

we collect a dataset of facial markers with an average size much smaller than publicly available small object datasets. 

Ablation studies and comparison experiments are conducted to evaluate the performance of our approach. Compared 

with the baseline YOLOv8 model, YOLO-Ti shows a 30.4% improvement in mAP50 while reducing model parameters 

by 65.1%. The automatic feature extraction provided by our model facilitates the construction of digital humans, 

providing significant savings in manpower and time for modelers.  

Keywords: Facial markers, tiny object detection, improved YOLOv8 algorithm, 3D face reconstruction 

1. INTRODUCTION  

Recent years have seen a growing focus on creating naturally realistic and intelligent digital humans for AR and VR 

applications, particularly within the gaming and film industries. Despite the availability of convenient and automated 

solutions for constructing digital avatars for the general public1-5, in pursuit of higher precision, many studios still choose 

high-resolution multi-view images as input to reconstruct 3D digital facial models6-8. The process often involves 

manually drawing markers on a real person’s face to incorporate additional facial features, facilitating multi-view photo 

alignment9-11. Moreover, marker information can also be used to assist in subsequent steps of digital human generation, 

such as rigging and animation driving12,13. 

However, the challenge arises due to the large number of manually drawn facial markers, coupled with their small size. 

In a 1024×1024 pixel facial image obtained from shooting, for example, the size of these markers is often less than 10 

pixels. Comparatively, the definition of a small target is based on the area ratio of the target bounding box to the 

background image, falling between 0.08% and 0.58%14. While the area ratio of these markers to the face is mostly below 

0.01%. In order to create high-precision digital avatars, some studios currently employ a manual solution to label the 

location of these markers on the image one by one. It is a time-consuming and labour-intensive process. Therefore, we 

are exploring the use of algorithms to automatically label these markers, providing supplementary feature information for 

3D reconstruction. 

Most current object detection algorithms are designed for large and medium-sized objects, which are difficult to adapt to 

the task of detecting tiny objects such as facial markers. Directly applying existing algorithms to this task is evidently 

inappropriate. Therefore, this paper proposes an object detection framework YOLO-Ti to detect tiny facial markers. Our 

contributions are listed as follows: 

 A feature fusion module Cross-BiFPN is proposed, which incorporates additional cross-connecting branches between 

different network layers to make better use of low-level features. 
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 We introduce a high-resolution detection head and explore schemes for lightweighting models, which simultaneously 

ensures high accuracy in detecting tiny objects while using fewer parameters. 

 We build a dataset of facial markers with an average size much smaller than publicly available small object datasets. 

Ablation studies and comparison experiments are conducted to demonstrate the capabilities of our method. 

2. RELATED WORKS 

Object detection is a crucial area of computer vision research, serving as the basis for various complicated visual tasks 

and finding applications across industries such as agriculture and manufacturing. In recent years, although there have 

been great advancements in object detection due to the accelerated development of deep learning, most of the existing 

algorithms are primarily designed to detect large and medium-sized objects. Unfortunately, there are few models 

specifically tailored for tiny objects. Furthermore, tiny objects present unique challenges, being inherently diminutive 

with inconspicuous features. These characteristics contribute to the poor performance of existing algorithms. 

Consequently, improving the effectiveness of tiny object detection remains a challenging and critical study focus15. 

In order to enrich the dataset and introduce more small-scale objects, YOLOv416 proposed the Mosaic data enhancement 

method. This method reads four different images simultaneously and stochastically splices them using flipping, scaling, 

and cropping. However, the method has some drawbacks: the use of splicing disrupts the contextual information of the 

original image. For facial marker data, where markers are concentrated in the facial region at the center of the image, the 

Mosaic method disrupts the distribution of markers. Moreover, scaling and cropping may further reduce the size of 

objects in the image, resulting in a poorer ability of the detection model. 

Haris, Shakhnarovich, and Ukita17 introduced an end-to-end trained super-resolution approach based on the Faster R-

CNN18 network to address low-resolution regions, enhancing the detection performance of small targets. Nevertheless, 

the deep network structure of Faster R-CNN poses challenges in extracting features for dense objects after aggregation. 

YOLO-Z19 improves on the YOLOv520 model by replacing the Path Aggregation Network (PANet) structure21 of the 

neck network with Bidirectional Feature Pyramid Network (BiFPN)22, enhancing feature fusion capability. ACAM-

YOLO23 addresses the challenge posed by a large proportion of objects and partial scene occlusion in aerial object 

detection. The Adaptive Co-Attention Module (ACAM) is integrated into both YOLOv5’s backbone network and feature 

fusion network to facilitate efficient feature extraction. However, ACAM-YOLO adds the ACAM module after different 

feature maps to detect various sizes of targets, including large, medium and small. It increases computational effort and 

does not specifically give more attention to small objects. 

Akyon, Altinuc, and Temizel24 proposed Slicing-Aided Hyper Inference (SAHI), a general framework applicable to any 

object detector. In this approach, a high-resolution image is sliced into small localized images during the inference stage, 

and the results are then combined after detecting the localized images separately. Although it shows high accuracy in 

detecting small objects, it is essentially a data preprocessing method and does not alter the detection capability of the 

original model. 

Based on the above discussion, it is found that most existing detection algorithms are designed to enhance the detection 

of medium and small objects, which are usually evaluated for algorithmic performance on aerial datasets such as 

VisDrone25-28. There are fewer models specifically improved for detecting tiny targets, such as facial markers. 

3. METHODOLOGY 

3.1 The additional high-resolution head 

YOLOv829 architecture consists of three main components: the backbone network, neck network, and head network. In 

the backbone network, the input image undergoes five CBS blocks to obtain a 32-fold downsampled feature map. As 

shown in Figure 1, assuming an input size of 640×640, the three feature maps passed to the neck network have 

resolutions of 80×80, 40×40 and 20×20. While multi-scale feature fusion is implemented in the neck network through 

the PANet module, it does not alter the scale of feature maps. However, in tasks involving the detection of tiny objects, 

the targets are often very small. For instance, our self-constructed face dataset used in this paper includes many tiny 

markers with an average size of less than 7×7 pixels. Due to numerous down-sampling and pooling operations, most 

features of such objects are lost, making them challenging to detect30.  
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Figure 1. Overall structure of YOLOv8. 

To ensure effective detection of the aforementioned tiny objects, we introduce a new detection head onto YOLOv8, 

utilizing the underlying features of layer P2. The structure is illustrated in Figure 2. This high-resolution feature map has 

a scale of 160×160 pixels and preserves more low-level feature information, including details about tiny objects, as only 

two down-sampling operations are performed in the backbone network. 

In the PANet module of the neck network, specifically, the top-down paths also incorporate a feature map H2, matching 

the scale of the layer P2 in the backbone network. These maps are used for feature fusion through concatenation and are 

subsequently output. Alongside the original three detection heads, this addition effectively mitigates the negative impact 

caused by scale differences. The resolutions of the four-level feature maps output via H2, H3, H4, and H5 are 160×160, 

80×80, 40×40, and 20×20. Despite the additional computational and memory overhead introduced by the extra detection 

head, it plays a crucial role in enhancing the model’s detection capability for tiny objects. We conduct experiments in 

Section 4 to demonstrate its effectiveness. 

 

Figure 2. Adjustment of the model structure, involving the removal of the detection head H5 designed for large objects and the 

addition of H2, specifically for tiny objects. 

Considering both the model’s detection capability and computational efficiency, we opt to remove the detection head H5 

designed for large objects, while incorporating H2 specifically for tiny ones. The output feature map of H5 has a 

resolution of 20×20 pixels, initially intended for detecting large-sized objects in the YOLOv8. Increasing the depth of the 

network generally improves the capability to detect objects, but for the specific task of detecting small objects, there is 

little benefit in simply increasing the depth of the network. Although features from the lower layers are fused in the 

bottom-up paths of the neck network, after multiple down-sampling and pooling operations, the top output layer 

essentially excludes information about tiny object features. Additionally, through experimentation, we find that retaining 

or discarding the top layer has little impact on detection effectiveness for tiny objects such as facial markers. Therefore, 

to reduce the parameters, we remove layers H5 and P5, essentially shifting the entire model structure down by one layer, 

as depicted in Figure 2. The final output of the three-level feature map resolutions is 160×160, 80×80, and 40×40. 

3.2 Cross-BiFPN module 

Feature fusion is a widely used technique in object detection, entailing the integration of extracted low-level features--

such as stripe shape, object contour, and pixel distribution—with high-level abstract semantic information. To alleviate 

the impact of tiny object characteristics on algorithms, many researchers have refined the architecture of the feature 

fusion module, aiming at enhanced results. One of the most notable structures is the Feature Pyramid Network (FPN)31. 

After layer-by-layer feature extraction from the input image, an additional top-down path with multiple up-sampling 
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operations efficiently merges information from different layers. The combined information is then fed into the prediction 

head to produce the final results. However, a limitation of FPN is its single top-down path, posing challenges in 

efficiently transmitting bottom-layer information to the last layer. 

The YOLOv8 model adopts the PANet structure, which includes an extra bottom-up path, facilitating the transmission of 

information from the bottom layer upwards. However, it lacks a direct combination of features extracted from the 

backbone with the additional bottom-up path. BiFPN is a simple and efficient multi-scale feature fusion method. It 

removes PANet nodes that contribute less to feature extraction and introduces skipping connections between output and 

input nodes at the same scale. This ensures a comprehensive fusion of multi-scale features in each layer while 

significantly preserving the original features. 

For the tiny object detection task, to fully utilize the low-layer information from the backbone network, we propose the 

Cross-BiFPN module. In comparison to the BiFPN module, this approach does not use direct skips between output and 

input nodes of the same scale. Instead, it establishes a cross-skipping connection between the input nodes of the lower 

layer of the backbone network (I1, I2 and I3) and the output nodes of the higher layer of the head network (H2, H3 and H4). 

These cross-skipping connections ensure that feature information related to tiny objects is better preserved. Since feature 

maps of different layers have distinct sizes, the outputs of I1, I2 and I3 also need to undergo a down-sampling operation 

before connecting to H2, H3 and H4, as shown in Figure 3. 

In the BiFPN module, the fused feature of two feature maps is computed by adding their weights, which may 

overcompress channels when dealing with a large number of model branches. Therefore, in order to maximize the 

richness of detail and semantic information in the output features and preserve features for optimal detection 

performance, we discard the idea of adding and instead adopt concatenation for feature fusion. Taking the output of the 

H3 as an example, the calculation process is as follows: 
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where Downsample( ) represents the max-pooling operation, Concat( ) denotes concatenation of all input features along 

channel dimensions. 

 

Figure 3. Structure of the proposed Cross-BiFPN module. 

3.3 Self attention mechanism 

Squeeze and Excitation (SE)32 is a lightweight attention module designed primarily to address the issue of the varying 

importance of different channels in the feature map. In the conventional process, researchers typically assign the same 

weight to all channels of the feature map. However, the importance of different channels varies. In the case of a given 

feature map, the SE attention module derives the attention mapping for channel dimensions and then multiplies the input 

feature with the attention mapping. The detailed process is illustrated in Figure 4. 

In the initial step, the input feature map of size H×W×C undergoes compression, utilizing global average pooling in the 

spatial dimension to obtain a feature map of 1×1×C. Excitation stage involves two Fully-Connected (FC) layers. The first 

FC layer reduces channels as C/r, followed by the application of the ReLU activation function. Subsequently. The 

second FC layer elevates the feature map back to C channels. Afterwards, it introduces the Sigmoid activation function 

to generate attention weights for channels, maintaining a size of 1×1×C. This approach benefits from additional 

nonlinear processes, accommodating complex correlations between channels. The hyperparameter r represents the ratio 

of channel compression, with a default value of 16. Finally, the original input feature map is multiplied channel-by-

channel with the channel attention weights, resulting in the final output map of size H×W×C. 
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According to Reference32, the SE module was integrated into distinct models for different datasets and tasks, and the 

model performances were improved, proving the validity of the SE attention module. In Subsection 3.2, we introduce the 

Cross-BiFPN module for feature fusion in the neck network. The concatenation operation involves the channel stacking 

of input features from different branches. In scenarios with a large number of branches, assigning different weights to 

distinct channels becomes useful. Additionally, given the characteristics of tiny-sized objects with subtle features, we 

incorporate the SE attention module after the H2 feature map. This module performs adaptive weight assignment for 

channel dimensions, activating features relevant to classification and localization tasks while suppressing irrelevant 

information in the input features. Figure 5 shows an overview of the proposed model.  

 

Figure 4. The process of Squeeze and Excitation. 

 

Figure 5. Overview of the proposed YOLO-Ti structure. 

3.4 Loss function 

YOLO-Ti has the same loss function settings as in YOLOv8. The classification loss 
cls

L  assesses the model’s 

performance by computing the cross-entropy of the probability distribution between prediction and ground truth33: 
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where 
ic

y  is a sign function, 
ic

y =1 if in fact sample i belongs to category c, otherwise 
ic

y =0. 
ic

p  denotes the probability 

of predicting that sample i belongs to category c, and M represents the number of categories. 

The bounding box loss consists of 
dfl

L  and 
ciou

L . 
dfl

L  is calculated using the difference between the predicted distance 

from the center point of the bounding box to each edge and the true value: 
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where d is the true distance, 
i

d  and 
1+i

d  represent two values closest to d, one left and one right, 
i

S  and 
1+i

S  denote the 

predicted probability respectively. This equation helps the network focus more quickly on the distribution of 

neighborhood of the target in the form of cross-entropy. 

In addition, 
ciou

L  measures the differences between the predicted bounding box and the ground truth bounding box: 
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where IoU quantifies overlap by calculating the ratio of the intersection area to the union area between two bounding 

boxes. b and bgt denote the center points of the two boxes,   is the Euclidean distance between them, s refers to the 

diagonal distance between the minimum bounding rectangle of the two boxes.   represents a weight function, and v is 

used to measure the difference between boxes in terms of aspect ratio. The total loss is calculated as follows: 

cioudflclstotal
LLLL ++=                                                                   (5) 

4. EXPERIMENTS 

4.1 Experimental conditions 

(1) Datasets 

We collected facial images from 5 volunteers using a professional camera for our dataset. On each volunteer’s face, we 

drew tiny, evenly distributed markers, as illustrated in Figure 6. We made sure to capture multiple sets of full-face photos 

from a unified viewpoint. Each volunteer’s face had a varying number of markers with different colors and shapes, 

which could differ in each shooting session. All data collected in this paper is for non-profit academic use only. 

The facial dataset contains 1320 high-resolution face images with a size of 1024×1024 pixels. The labeling of facial data 

was done by a pre-trained program combined with manual labeling. The annotations include four classes: red marker, 

black marker, blue marker, and green marker. There are a total of 103,681 instances in the dataset, with an average of 

about 80 bounding boxes per image. Figure 7 shows the distribution of class labels and the scale of bounding boxes. 

In this dataset, 90% of objects have an absolute size of smaller than 10 pixels, with the largest object being less than 16 

pixels. Table 1 compares the size distribution of objects in different datasets. The mean and standard deviation of 

absolute sizes in our dataset of facial markers are 6.7 pixels and 2.1 pixels, significantly smaller than other aerial image 

and natural image datasets. Compared to the public AI-TOD dataset34 of tiny objects, the sizes are nearly half. 

Table 1. Mean and standard deviation of object size across different datasets. 

Dataset34 Absolute size (pixel) Relative size (pixel) 

PASCAL VOC 07++12 156.6±111.2 0.372±0.265 

MS COCO 99.5±107.5 0.190±0.203 

DIOR 65.7±91.8 0.082±0.115 

Airbus-Ship 44.9±44.1 0.058±0.057 

VisDrone 35.8±32.8 0.030±0.026 

DOTA-v1.0 55.3±63.1 0.028±0.034 

DOTA-v1.5 34.0±47.8 0.016±0.026 

xView 34.9±39.9 0.011±0.013 

AI-TOD 12.8±5.9 0.016±0.007 

Ours 6.7±2.1 0.007±0.002 
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Figure 6. Visual examples of drawn facial markers. 

   

(a) (b) (c) 

Figure 7. Analysis of the facial marker dataset. (a): The distribution of class labels; (b): The visualization of object positions; (c): The 

visualization of bounding box scales. 

(2) Implementation details 

All experiments were performed with NVIDIA GeForce RTX 3080 graphics card, Intel(R) Core (TM) i7-12700K 

processor, Windows operating system (version 10), PyTorch (version 1.12.1) and Python (version 3.8.18). Program 

acceleration was achieved through CUDA 11.3.1 and CUDNN 8.2.1. 

The dataset images and labels were split into training, validation, and test sets in a ratio of 8:1:1. During the training of 

the original YOLOv8 model, we utilized the official pre-trained model to speed up the network training process. The 

training employed the Adam optimizer with an initial learning rate of 3−e , and the learning rate was reduced to 5−e  for 

the last epoch. The weights for classification loss 
cls

L , bounding box loss 
ciou

L  and 
dfl

L  were used with default values of 

0.5, 7.5 and 1.5. The maximum number of training epochs on the dataset was set to 100, and the training batch size was 

16. The parameters used for training YOLO-Ti were consistent with those used for YOLOv8. 

4.2 Experimental results 

(1) Improvements based on models of different sizes 

This subsection involves the improvement of YOLOv8 models of different sizes, namely YOLOv8n, YOLOv8s, 

YOLOv8m, YOLOv8l, and YOLOv8x, following the methods described in Section 3. The original models and their 

improved YOLO-Ti models were individually trained on the facial marker dataset.  

Figure 8a depicts the performance of models of different sizes (n, s, m, l, x). It can be seen that from size n to size l, the 

mAP50-95 of the model improves as the number of parameters increases. However, from size l to size x, the mAP50-95 

remains relatively constant, even showing a slight decrease. Overall, the YOLO-Ti model, compared to the YOLOv8 

model, shows substantial advancements in detection performance, coupled with a reduction in parameters. 

Figure 8b shows the relationship between the inference time required for different-sized models and their mAP50-95. 

The overall trend is similar to Figure 8a. Taking example of the YOLO-Tin model, we can calculate a detection speed of 

approximately 139 frames per second, using the reciprocal of latency.  
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(a) (b) 

Figure 8. Performance comparison of YOLOv8 and YOLO-Ti models of different sizes on facial marker dataset. (a): Relationship 

between mAP and parameters; (b): Relationship between mAP and latency. 

(2) Ablation study 

In this subsection, we conducted ablation experiments to explore the impact of each improved or added module on 

overall performance, using the original YOLOv8n as the baseline. Experiments were carried out under the same 

configuration parameters, with input sizes set to 640×640 pixels. After 100 iterations, we recorded several key indicators 

for each training task. The experimental results are presented in Table 2. 

Table 2. Ablation experiment results for YOLOv8n on the facial marker dataset. 

Model Precision 

(%) 

Recall 

(%) 

mAP50 

(%) 

mAP50-95 

(%) 

Params 

(M) 

FLOPs 

(G) 

YOLOv8n 93.2 38.8 59.9 41.0 3.01 8.2 

YOLOv8n+H2-H5 89.4 77.6 87.4 49.8 0.99 10.6 

YOLOv8n+H2+SE 88.2 77.9 88.2 50.2 0.99 10.6 

YOLOv8n+H2+Cross-BiFPN 89.5 79.2 89.4 53.0 1.05 11.2 

YOLOv8n+H2+Cross-BiFPN+SE 90.4 80.4 90.3 52.9 1.05 11.2 

According to Table 2, removing the original large object detection head H5 and adding the H2 layer not only reduces the 

model parameters by 66%, but also significantly improves the model’s mAP in detection tasks for tiny facial makers, 

especially in terms of recall rate. In addition, the integration of SE and Cross-BiFPN modules enhances the model’s 

performance, with mAP increasing by 0.8% and 2.0%, respectively. Overall, despite a slight decrease in Precision, there 

is a substantial 41.6% improvement in Recall, indicating an enhanced ability to detect more tiny objects. This highlights 

the availability of adopting a high-resolution detection head, incorporating attention and feature fusion modules into the 

neck of the network. Figure 9 displays some visualization results of YOLOv8n and our YOLO-Tin for facial markers. 

 

Figure 9. Visual results: YOLOv8n vs. YOLO-Tin on facial marker dataset. 
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(3) Comparison with other methods 

In order to validate the effectiveness of the proposed method, we compared our model on the self-constructed facial 

marker dataset with previous methods, such as YOLOv416, YOLOv5s20, YOLOv735, Faster-RCNN18, and Centernet36. 

Table 3 reports the experimental results. It can be seen that the YOLO-Tin model performs best in detecting tiny markers, 

with its highest mAP50 and AP50 values in each category. Compared to YOLOv8n, YOLO-Tin’s mAP is improved by 

30.4%, demonstrating that it has stronger detection capabilities for tiny objects while using fewer parameters and 

computational complexity. 

It’s noteworthy that the Faster-RCNN model shows relatively poor performance while detecting tiny facial markers. This 

is attributed to the deep network of Faster-RCNN, leading to the loss of fine details in tiny object features and resulting 

in numerous false negatives. This observation supports the idea that simply increasing network depth and parameters 

may not be effective for tiny object detection tasks. In terms of the characteristics of tiny objects, our approach 

appropriately reduces the size of the network, pays more attention to low-level features, and effectively utilizes the 

features of tiny objects in the images. 

Table 3. Comparative performance of YOLO-Ti against six other detection models on the facial marker dataset. 

Model 

AP50 (%) 
mAP50 

(%) 

Params 

(M) Black 

marker 

Blue 

marker 

Green 

marker 

Red 

marker 

Anchor-based one-stage: 

YOLOv4 57.4 39.6 42.0 45.0 46.0 64.4 

YOLOv5s 63.7 47.7 57.1 69.6 59.5 7.2 

YOLOv7 68.0 37.4 48.5 68.5 55.6 36.9 

Anchor-based two-stage: 

Faster-RCNN 10.2 10.6 26.6 29.6 19.3 28.3 

Anchor-free: 

Centernet 49.9 42.1 54.4 72.6 54.8 32.7 

YOLOv8n 63.9 47.1 60.6 68.1 59.9 3.0 

YOLO-Tin 95.1 81.8 90.6 93.6 90.3 1.1 

5. CONCLUSIONS 

In this paper, we propose a detection model YOLO-Ti, based on the YOLOv8 model for the detection task of facial 

markers, which is suitable for tiny targets. First, a high-resolution detection head is added for detecting tiny-sized targets. 

Second, an improved feature fusion module, Cross-BiFPN, is presented to incorporate additional cross-skipping 

connections between different network layers, enhancing the utilization of low-level features. Third, a SE attention 

module is introduced into the head network to further strengthen the model’s ability to detect tiny objects. 

In addition, we make modifications to the base model of different scales and evaluate their enhancements. Ablation 

studies and comparison experiments results show that our model has the highest mAP value and is suitable for the tiny 

target detection task. However, the detection speed decreases as the model complexity increases. Our future work is to 

further improve the detection capability of the model without reducing the detection speed, and combine it with face 

reconstruction, target tracking and other applications. 
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