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Abstract.Quantum photonic processors are emerging as promising platforms to prove preliminary evidence of
quantum computational advantage toward the realization of universal quantum computers. In the context of
nonuniversal noisy intermediate quantum devices, photonic-based sampling machines solving the Gaussian
boson sampling (GBS) problem currently play a central role in the experimental demonstration of quantum
computational advantage. A relevant issue is the validation of the sampling process in the presence of
experimental noise, such as photon losses, which could undermine the hardness of simulating the experiment.
We test the capability of a validation protocol that exploits the connection between GBS and graph perfect
match counting to perform such an assessment in a noisy scenario. In particular, we use as a test bench the
recently developed machine Borealis, a large-scale sampling machine that has been made available online for
external users, and address its operation in the presence of noise. The employed approach to validation is also
shown to provide connections with the open question on the effective advantage of using noisy GBS devices
for graph similarity and isomorphism problems and thus provides an effective method for certification of
quantum hardware.
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1 Introduction
Quantum devices and quantum algorithms promise substantial
advantages in many computational tasks. Such applications
include as notable examples, quantum computing, simulation,
communication, and sensing. In recent years, an ever-increasing
number of advancements have been made in this field, with the
first experiments1–6 tackling the quantum advantage regime,
namely, the scenario where quantum devices are capable of out-
performing classical computers in specific tasks. These results
have thus opened the way for the development and application
of noisy intermediate-scale quantum processors7 for quantum-
enhanced information processing.

An example of a nonuniversal quantum processor is the
Gaussian boson sampling (GBS) scheme. It is a variant of the
original proposal of boson sampling (BS), which is a classically
hard computational problem that can be tackled through the use

of dedicated quantum photonic devices. More precisely, GBS is
the problem of generating samples from the photon-counting
output distribution of indistinguishable Gaussian states of light
after the evolution through a multimode random linear optical
interferometer.8–12 This problem is intractable for a classical
computer when the input states are indistinguishable sources
of single-mode squeezed states. Then, a dedicated quantum pho-
tonic device can tackle such a task more efficiently, thus corre-
sponding to a quantum computational advantage for a problem
instance of sufficient size. The GBS problem has thus drawn
attention in the photonic community due to the practical chance
to achieve the quantum advantage regime with the technology
available today. The latest GBS instances have reached the con-
dition where the quantum device has solved the task faster than
current state-of-the-art classical strategies in several experi-
ments,2,4,6 including the “Borealis” machine by the company
Xanadu.5 Further interest in the GBS scheme is motivated by
the connection between the sampling process and the problem
of counting perfect matchings of arbitrary graphs. In fact, an*Address all correspondence to Nicolò Spagnolo, nicolo.spagnolo@uniroma1.it
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important property of GBS is that it is possible to encode an
adjacency matrix of a graph in the device by proper tuning of
the interferometer parameters and the squeezing values. Thus
the collected samples could be used to learn several properties
of the graph and be employed to solve some relevant problems
in the field such as finding the dense subgraphs and max-clique,
simulating vibronic spectra, and graph similarity.13 Recently,
GBS-based algorithms to solve such well-known problems in
graph theory have been formulated.14–16 First tests on quantum
devices have been then performed on small-scale integrated
photonics devices17 and on larger dimensions in bulk optics
through time-18,19 and path-encoded interferometers.20

In recent years, great effort has been devoted to developing
more efficient classical algorithms capable of simulating the
sampling process,21–30 with the motivation of investigating the
classical simulatability threshold of GBS devices. In this con-
text, further studies had individuated sources of experimental
noise that could undermine the hardness of the problem and
allow for classical simulations,31 such as photon losses32–37 and
photon distinguishability.38–41 Thus the benchmarking of a GBS
experiment can be performed by following a validation ap-
proach, i.e., a test that discerns when samples are drawn from
classical simulative models. The methods vary from Bayesian
tests,4,42,43 statistical properties of two-point correlation
functions44–46 or higher order ones,4 detector binning,47 and prop-
erties of marginal probabilities,40,48,49 to a very recent method
based on the feature vector components of the graph encoded in
the device.50

In this work, we focus on testing graph theory-based methods
to assess the operation of a Gaussian boson sampler in the pres-
ence of experimental noise. As a test bench system for this
analysis, we employed the Gaussian boson sampler Borealis,5

which recently claimed quantum advantages and has been made
available on the cloud on Xanadu Cloud51 and Amazon Braket.52

Some properties of the device have been recently investigated in
Ref. 53 by remote users. The authors measured the quadrature
coherence scale to find genuine signatures of the features of
single-mode bosonic systems in phase space representation.
Here, we analyze the capabilities of the method based on graph
feature vectors50 to exclude that Borealis samples collected in a
real experiment subjected to noise can be compatible with some
relevant classically simulative modes, that is, thermal, coherent,
squashed, or distinguishable particles samplers. First, in Sec. 2,
we provide background information on GBS. Then, in Sec. 3,
we review the main features of the structure of Borealis. After
that, in Sec. 4, we explain the process for interfacing with
Borealis. Finally, in Sec. 5, we analyze the collected data and
perform the validation of Borealis against the aforementioned
alternative models.

2 Background on Gaussian Boson
Sampling and Connection with
Graph Theory

GBS is a linear optics scheme to generate samples drawn from
the photon-counting distribution generated by Gaussian light
sources at the outputs of a multimode interferometer.10–12 Such
a sampling task is hard to simulate for certain classes of
Gaussian states, such as indistinguishable sources of single-
mode squeezed vacuum (SMSV) states. The hardness is pre-
served in noisy experimental conditions as long as the levels of
losses and photon distinguishability are limited.

Consider m independent sources of Gaussian states ρi
without displacement such that the input is ρ ¼⊗m

i¼1 ρi with a
2m × 2m covariance matrix σ. The probability distribution of
detecting n photons in the configuration ~n ¼ ðn1; n2;…; nmÞ,
where ni is the number of photons in the output i andP

m
i¼1 ni ¼ n, is

Pð~nÞ ¼ jσQj−1∕2
HafðA~nÞQ

m
i¼1 ni!

: (1)

The quantity σQ corresponds to σ þ I2m, being I2m the
2m × 2m identity matrix, and Haf to the hafnian operation of
the 2n × 2n submatrix A~n. Such a submatrix (A~n) is individuated
by taking ni times the i’th row and the iþm’th column of A,
and the hafnian is the operation that counts the number of a per-
fect matching in a graph represented by a symmetric adjacency
matrix.54 The whole 2m × 2m matrix A has the following struc-
ture:

A ¼
�

B C
CT B�

�
; (2)

where B is an m ×m symmetric matrix and C is an m ×m
Hermitian one. Both blocks depend on the transformation U
implemented by the interferometer and the input Gaussian state.
For example, the matrix representing m indistinguishable
SMSV states with squeezing parameters si in a lossless experi-
ment has C ¼ 0 and B ¼ Udiagðtanh s1;…; tanh smÞUT. In
this case, the output probabilities can be evaluated according
to the following expression:

Pð~nÞSMSV ¼ jσQj−1∕2
jHafðB~nÞj2Q

m
i¼1 ni!

: (3)

In this scenario, the adjacency matrix of a graph can be
encoded in B, through the Takagi–Autonne factorization, by
tuning U and si values. This provides a direct link between
the output of specific instances of GBS and graph theory. For
this reason, GBS with SMSV states have attracted a great deal
of attention not only for proving a quantum advantage in the
sampling task but also for applications on graphs. Indeed, GBS
devices have been suggested as possible tools to tackle prob-
lems, such as finding densest subgraphs, the max-clique,14,18

and the graph similarity.15–17 The opposite scenario with respect
to pure SMSV inputs is a thermal sampler, in which there is no
coherence among the possible number of emitted photons that
result in A matrix with C ≠ 0 only. Note that the latter case cor-
responds to a classically simulative model, given that an effi-
cient sampling algorithm from thermal inputs can be defined.

Many approaches have been proposed to validate GBS ex-
periments in the quantum advantage regime.42,44–46,50 The goal
of a validation algorithm is to exclude the samples drawn from
classical simulative distributions, such as the outputs of thermal,
coherent, squashed, and distinguishable Gaussian samplers.
In this work, we apply a recent method introduced in Ref. 50
that makes use of graph feature vectors estimated from GBS
samples. The components of such vectors are called “orbits,”
which result from a coarse graining of the output configurations.
More precisely, the method consists of the classification of
different samplers in the space spanned by the three feature
vector components identified by the probability of the orbits
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O1 ¼ ½1,1; 1,1;…�, O2 ¼ ½2,1; 1,1;…�, and O3 ¼ ½2,2; 1,1;…�
for a given number n of detected photons. An orbit ~n is defined
as the set of possible index permutations of ~n. The three orbits
fO1; O2; O3g, employed for the validation method, collect, re-
spectively, the output states in which the number of photons in
the modes is 0 or 1, in which only one detector measures two
photons, and in which two modes host two photons. Plotting the
feature vectors in the space fO1; O2; O3g, retrieved by summing
the normalized frequencies of the output configuration corre-
sponding to each orbit, can be used to distinguish between vari-
ous types of classical samplers. Indeed, the orbit distributions
for the different models are characterized by different behaviors,
such as, for instance, lying on different hyperplanes. We under-
line that such a choice is effective in the n ≪ m regime, in which
we expect that bunching configuration has a very small proba-
bility to occur. In general, one must choose the orbits that have
the highest probability in order to be estimated from a finite
sample with good accuracy.

3 Structure of Borealis as a Time-Bin GBS
Borealis5 is based on time-domain multiplexing55–57 with limited
connectivity. A single squeezed-light source emits batches of
m time-ordered squeezed-light pulses that interfere with one
another with the help of optical delay loops, programmable

beam splitters (BSgate), and phase shifters (Rgate). The loops
arrangement shown in Fig. 1(a) is an example of a universal
time-bin interferometer able to encode any operation over the
modes (see also Refs. 55 and 56). The transformation is
controlled by time modulations of the splitting ratios of two
BSgates [rmðtÞ and rðtÞ] and the two phases of the Rgates
[ϕmðtÞ and ϕðtÞ]. The two loops are concatenated and cover
the time separation τ between consecutive bins and the entire
time duration of the m modes, τm ¼ mτ, respectively. This
architecture has been recently employed to realize a program-
mable and universal interferometer encoded in the time bin for
GBS applications.19

The loop structure of Borealis does not follow the universal
layout. Figure 1(b) shows the time-bin interferometer that
comprises three consecutive loops with three tunable BSgates
r1,2;3ðtÞ and likewise tunable Rgates ϕ1,2;3ðtÞ. The tunable phase
shifters are limited to the range ½− π

2
; π
2
�. There are further three

static phases ~ϕ1,2;3 that cannot be controlled by the user and
represent the optical phases of each loop. The time separation
between the bins is τ ¼ 167 ns. Then the time that covers the
evolution of the 216 logical modes plus the 43 ancillary modes
of the device is 43.5 μs and thus coincides with the time needed
to obtain one sample from the device. The length of the three
loops covers a time delay equal to τ, 6τ, and 36τ, respectively.
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Fig. 1 Time-bin encoding machines and Borealis structure. (a) Example of universal time-bin
interferometers. In such an encoding, the optical modes are discrete time bins. The unitary oper-
ation over the modes is performed by two concatenated fiber loops. The shortest loop covers
the time separation between two consecutive time bins, whereas the longest one covers the
whole duration of the number of modes. The same squeezing source is excited at each pulse,
and photon-counting measurements are performed at the end of the evolution. (b) Structure
of Borealis.5,58 The interferometer comprises three consecutive loops of increasing length.
(c) Example of a unitary matrix Uij performed by Borealis that shows the limited connectivity
among the modes due to the loop structure.
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The squeezer has four settings for the squeezing parameter,
“low,” “medium,” “high,” and “zero.” The squeezing must be
set to one of the allowed values, and it cannot be modulated over
the temporal modes. The setup ends with the single-photon de-
tection stage. The time bins are translated into 16 different spatial
modes by a time-to-space demultiplexer system. Single photons
are then detected by 16 photon-number-resolving detectors.5

The design of Borealis has been chosen to be a compromise
between the need for a programmable device and the require-
ment to achieve the quantum advantage regime. The architecture
does not allow for full connectivity between the modes, with
a layout that has been recently shown to reduce the required
dimension for simulation via tensor networks,30 while still
permitting the cover of high-dimensional spaces with mini-
mized losses and optical resources.12 For connectivity, we mean
the number of modes with which each of the modes interacts
directly. In Borealis, for example, the loop structure allows
each mode to be connected with at most six-time bins. Thus
the three-loop connectivity of Borealis puts some restrictions on
the matrices that can be represented, as we can see in Fig. 1(c).
The transfer matrix is limited to being zero on the upper half of
the diagonal. The moduli of the matrix elements decrease when
descending from the diagonal. They increase only every 6 and
36 modes but are still smaller than the values at 6 or 36 modes
above. Other restrictions derive from the ranges of tunability of
the Rgates that do not allow the encoding of meaningful graphs
adjacency matrices inside the device.

4 Interfacing with Borealis
Borealis was accessed through Amazon Braket,52 and the
parameters sent were the squeezing values, the parameters of
the three-beam splitters, and the parameters of the three-phase
shifters for each time mode, as well as the number of shots (i.e.,
the number of samples). The parameters sent are for 259-time
modes, even though the number of outputs that we show is 216.
This is because the first 43 modes are used to fill the loops, and
thus the output for those first 43 modes is basically background
noise. The device thus has 216 “logical” modes, while it has
259 “physical” modes.

When interfacing with Borealis, one also downloads the
device certificate, which describes the current calibration of
the device. It contains information such as the loop phases, the
squeezing values for the various settings, and the various effi-
ciencies. The certificate distinguishes among three types of
efficiencies:

• common efficiency, which corresponds to the balanced
losses of the device independent of the implemented circuit.

• loop efficiencies, which correspond to the losses of each
loop (three values, one for each loop).

• relative channel efficiencies, which correspond to the
relative efficiencies of the detectors (16 values, one for each
detector).

The amount of the losses changed on a daily basis. The aver-
age number of photons in the output from Borealis was usually
around 75% less than that of a lossless simulation with the same
parameters. This is due to the slightly different operating con-
ditions of the cloud version of Borealis with respect to the spec-
ifications reached in Ref. 5.

The information included in the device certificate is neces-
sary to perform numerical simulations with alternative models,
such as thermal samplers, which are used for comparison to

assess the operation of Borealis. One aspect to be taken into
account regarding the device certificate is that it is measured
once a day, right before the 2-h period in which Borealis is avail-
able. Thus it could be less representative of the state of Borealis
in those runs far away from the calibration. Indeed, the values of
these efficiencies seem to oscillate over time, as we will show in
Sec. 5. After some discussion with Xanadu’s team, it turned out
that these oscillations in the common efficiency are mainly due
to variations in temperature. The scale of these variations in
efficiency varies daily, with some days being stabler than others.

Another aspect to be taken into account regarding the device
certificate is that simulations based on the included parameters,
in particular with respect to noise, do not always accurately re-
produce some features of the machine output. For instance, in
some cases, we found that the difference in the average number
of detected photons per shot between the simulations performed
according to the certificate parameters and the measured sam-
ples was small. This indicated that the loss estimation in the
device certificate was accurate. In other cases, the mismatch
between simulation and experiment was significantly higher,
around 1.5 to 2 photon difference on an average number of pho-
tons ∼26, a value not compatible with statistical fluctuations. In
these trials, the device certificate did not represent the physical
device with sufficient accuracy within the statistical errors of the
apparatus. This issue started to be more evident after one main-
tenance period that was made near the end of January 2023.
Such a discrepancy is relevant when trying to compare the
experimental samples with simulations of classical samplers in
the validation stage of the device, as it is no longer possible to
have a truly accurate simulation for those days.

5 Borealis Data Acquisition and Validation
We will now analyze the results of our runs on Borealis and
compare them with some simulations. All of the codes to inter-
face with Borealis, perform the simulations, and analyze the
data were written in Python 359 and were based mainly on the
libraries Strawberry Fields60 and The Walrus.61

In Fig. 2, we show the distribution of the number of detected
photons at the Borealis outputs for the three squeezing levels
larger than zero. Our goal is to apply the orbits method to
validate our data against classically simulative models, such
as thermal, coherent, squashed, and distinguishable SMSV input
states. The method of comparing the orbits is effective, even in
the quantum advantage regime, as long as the number of modes
m is considerably larger than the number of detected photons.50

The reason is that in such a condition the probability distribution
of the various orbits’ configuration is peaked on a few orbits.
This is evident in Fig. 2, which shows the experimental orbits’
distribution for the three squeezing levels. For this reason, all
the runs shown in this section were made with the squeezing
parameter set to low, which satisfies the condition m ≫ n.
The results of Fig. 2 also motivate the performed choice on
the orbits for the application of the validation technique, given
that they correspond to highly populated ones.

To check the stability of the results over time, we ran sam-
pling experiments with the same settings of the circuit for
2 weeks. We executed two runs of 250,000 shots each day from
Monday to Friday for these 2 weeks. The parameters we used
are the following: all beam splitters are set to a transmissivity of
50%, and all phase shifters are set to 0. We notice that the ob-
served changes in the average number of detected photons in the
outputs during the days impacts significantly the probability of
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orbits fO1; O2; O3g. This variation is likely mostly due to
changes in the common efficiency between days, as mentioned
in the previous section. The plot of the three orbits probability
for the 2 weeks is shown in Fig. 3, whereas in Table 1, we show
the average number of photons per run of the day during the
2 weeks.

We now discuss the validation of the samples collected from
Borealis. Based on the results reported in Ref. 50, we expect that
indistinguishable SMSV GBS and indistinguishable thermal
samples display orbits on the same hyperplane in the space
spanned by fO1; O2; O3g. Furthermore, in the lossless case,
thermal and squeezed light GBS have a similar spread of points
in the orbits, while coherent light GBS has a spread of points
that is much larger (see also the Supplementary Material). The
presence of photon distinguishability results in a change of such
a hyperplane for squeezed, thermal, and coherent light. The
effect of the photon losses is to change the GBS orbits toward
the thermal sampler.50 In fact, both balanced (the common effi-
ciency in Borealis) and unbalanced (loop and relative detector
efficiencies) losses lead to changes in the orbits but always on
the same hyperplane. Indeed, introducing losses to a Gaussian
state corresponds to mixing it with the vacuum, thus increasing
its thermal component. Hence, this effect does not alter the
hyperplane of the orbits. Furthermore, in the presence of unbal-
anced transmissions between the channels, this introduces also
changes to the transfer matrix of the device, which does not
move the orbits in different hyperplanes. In Figs. 4(a) and
4(b), we show such behaviors in more detail. The simulation
considers thermal light inputs evolving through the transforma-
tion performed by the Borealis circuit with different levels of

common efficiencies. We set the parameters of the circuit as fol-
lows: the transmittance of BSgates was set randomly between
0.4 and 0.6, while the phase shifters were set to random values
in their full range ½− π

2
; π
2
�. The points that correspond to the

same number of detected photons move along lines. More pre-
cisely, the orbits somehow expand when the common efficiency
decreases and shrink when the efficiency increases. Unbalanced
losses, on the other hand, tend to alter the orbits, moving the
points away from those lines, but still keeping the orbit on that
same hyperplane. Furthermore, from this analysis, other imper-
fections, such as small errors in the squeezing parameters,
beam-splitter ratios, or interferometer phase shifts, are expected
to provide only the second-order changes in the orbits. Errors in
the squeezing parameter do not alter significantly the class of the
Gaussian state, and thus the orbits would move on specific lines
of the same hyperplane. Additionally, errors in beam-splitter
ratios or phase shifts would correspond to slight changes in
the transfer matrix, which do not alter significantly the orbits.
We also made an approximate simulation of the orbits of an
ideal GBS, as can be seen in Figs. 4(a) and 4(b). From this
simulation, we observe that those orbits reside on the same
hyperplane as the thermal ones, as expected. However, they
do not align with the lines of the thermal sampler.

In Figs. 4(c) and 4(d), we compare runs taken in around
3 months, from the end of December 2022 to March 2023, with
a break in January for maintenance. The circuit settings were
the same that we employed for the numerical simulations with
thermal light. The changes in the orbits are compatible with
changes in the common efficiency observed during the time of
data collection. The other interesting behavior is that the orbits
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Fig. 2 Detected photons and orbit probability distributions. The top row: the distributions of
the number of detected photons for the three levels of squeezing: (a) “low,” (b) “medium,” and
(c) “high.” The bottom row: the distributions of the orbit configurations for the number of detected
photons associated with the highest probability, namely, n ¼ 26 for low squeezing, n ¼ 62 for
medium, and n ¼ 97 for high squeezing. The x axis represents the various orbits’ configuration
ordered as follows, first ½1,1; 1;…�, then ½2,1; 1;…�, ½2,2; 1;…�, etc. The y axis represents the
number of samples for that orbit configuration. The size of each sample was 250,000 shots.
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seem to follow closely the lines from the thermal simulations.
However, they do to not match exactly those lines. Thus, accord-
ing to these tests, Borealis appears to behave as a lossy GBS
with squeezed states, which suggests that the orbits may be in-
termediate between a GBS with indistinguishable thermal light
and a lossless squeezed light GBS. Furthermore, the orbits still
lay on the same hyperplane of the thermal, like the case of a
lossy GBS with indistinguishable emitters. This allows us to ex-
clude the notion that the samples derive from a distinguishable
particle sampler. Since we have shown that changes in losses do
not change the hyperplane of the thermal simulation, from our
analysis we can restrict the hypothesis to a scenario where
Borealis is either a thermal with losses, a coherent with losses,
a squashed with losses, or an SMSV GBS with losses. As a

further test, in the following, we will also consider an additional
mockup corresponding to the greedy sampler5,49 that mimics
samples with the correct marginals up to a chosen order k.
More specifically, to further highlight the relevance of losses
for Borealis, we considered both samples generated via the
greedy algorithm for a lossless device implementing the ideal
unitary U, with squeezing parameters adapted to lead to the cor-
rect average photon number, and a lossy case where the param-
eters of Borealis device certificate have been used to generate
the greedy samples. As explained in Ref. 5, we considered as
a relevant case for Borealis the scenario with marginals order
k ¼ 2. We will now proceed to show that it is not a coherent
light sampler, and then we will show that it is closer to an
SMSV GBS than a thermal or a squashed one and to analyze
the greedy sampler scenario.

In Fig. 5(a), we compare data from runs of 250,000 samples
from Borealis on different days but with the same average num-
ber of detected photons (red points), with simulated samples
from coherent (green), squashed (orange), lossless greedy (pur-
ple), lossy greedy (cyan), and thermal light (red). In Fig. 5(b),
we consider runs performed on the same day, in which the de-
vice certificate provided an accurate estimate of the noise in the
experiment due to photon losses. The orbits of coherent light are
distant from Borealis data in both cases and have a significantly
bigger spread than the orbits of Borealis and the thermal sim-
ulations. As a side note, we can also see that the orbits of the
coherent sampler are distinct from those of a thermal sampler.
In fact, even the mean photon number is different between the
simulations of coherent and thermal samplers, indicating that
losses affect the two classes of states differently, given their
different photon statistic. On the other hand, both Borealis
and the thermal sampler seem to be affected in a very similar
way by the losses, at least in terms of the mean photon number.

Fig. 3 Stability check of Borealis total efficiency over days. Orbit distribution for the 2 weeks of
runs with the same circuit settings. The variations in the different days are due to changes in the
total efficiency of the apparatus, which is mostly dominated by the variations in common efficiency.
The points correspond to the three orbits’ probability for detected photons in the range between
18 and 32 photons. More precisely, each point on the plot is associated with a specific detected
photon number. The points at the bottom left corner correspond to 32 photons, while the points on
the right are the orbits for 18 postselected photons.

Table 1 Variation in the number of detected photons over daysa

Date 13/02 14/02 15/02 16/02 17/02

Run 1 23.86 24.98 24.20 25.77 26.03

Run 2 23.61 24.64 24.21 26.01 25.81

Date 20/02 21/02 22/02 23/02 24/02

Run 1 24.15 23.85 25.98 25.45 25.21

Run 2 24.16 23.99 26.05 25.43 24.70
aAverage number of photons in each run of the 2 weeks’ acquisitions

performed by setting the same matrix. The relative standard deviation
caused by the limited number of shots (250,000) is ∼0.04%, which leads
to a standard deviation in the mean photon number of around 0.01 pho-
tons. We thus observe that the mean number of photons in Borealis varies
on each run performed on different days, and on some days, this can
even vary from one run to the next one, resulting in the orbits for the
two runs of that day being further apart than the expectations.
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We also observe that the samples from Borealis can be distin-
guished from the lossless greedy sampler, while the orbits in
the lossy case are closer to the one of Borealis, and thus the
discrimination of this mockup needs to be supported by other
methods as those used in Ref. 5. This result further highlights
the relevance of losses in the analysis of the samples from
Borealis. Now, we are left only with the task of showing whether
Borealis is closer to a thermal sampler, a squashed sampler,
or an SMSV GBS with losses. Squashed states are the closest

classical model to the lossy SMSV sampler. Samples drawn
from the probability distribution of squashed states are obtained
using classical mixtures of coherent states,43,62 similar to the
thermal sampler.63

As we can see in Figs. 5(a) and 5(b), the orbits of Borealis
and the thermal and squashed simulations are similar. In particu-
lar, the distances between the orbits of the two classical models
corresponding to a given number of detected photons are com-
patible with the ones from Borealis within the typical orbits’

Fig. 4 Role of losses in the orbit estimation. (a), (b) Orbits for the thermal sampler simulations.
All points, except the green and dark gold ones, represent orbits where only the common efficiency
has been changed. The lower the efficiency is, the larger the radius of the orbits is. The green
points represent the case where one of the detectors was turned off, thus producing an unbal-
anced loss. The dark gold points are from the lossless indistinguishable SMSV states simulation.
The details on the parameters used for the simulations can be found in the Supplementary
Material. The lines are obtained by making a linear fit on all points with the same number of de-
tected photons, excluding the points of the orbit with unbalanced losses and the SMSV simulation.
Each line represents a different number of photons. We highlighted the number of corresponding
photons for some of the lines in this figure. The effect of balanced losses is to move points along
the lines. The unbalanced ones move the points away from the lines, but keep them on the same
hyperplane. However, such an effect is evident only in the case of a strong amount of imbalance.
The lossless SMSV states points are not on those lines but are still on the same hyperplane.
We show the projection of the orbits in the plane in (b). (c), (d) Experimental orbits from the runs
on Borealis. The lines are the same as the panel above calculated from the simulation with
thermal states.
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dispersion due to the intrinsic fluctuations of Borealis parame-
ters in time. This means that in this case, the orbits alone are
not enough to ascertain whether Borealis is more likely to be
a GBS with SMSV input states, a squashed sampler, or a thermal
sampler. To further distinguish among these three cases, we
look also at their respective sample covariance Covðni; njÞ.
These quantities form the matrix of the two-point correlators
in the output modes i; j, with matrix elements Cij defined
as Cij ¼ Covðni; njÞ ¼ hninji − hniihnji. These quantities are
informative to help in discerning the nature of the sampler
as shown in the theoretical works44,45 and previous
experiments.2–6,46 Figures 5(c)–5(h) show the simulated covari-
ance matrices and the one calculated from a finite sample of
250,000 shots. From this analysis, the behavior of Borealis is
closer to the one of an SMSV GBS with losses, rather than a
lossy thermal sampler or a lossy squashed sampler. This conclu-
sion is supported by performing a more quantitative analysis of
the two-point correlators. In Fig. 6, we compare the values Cij of

samples collected from Borealis with the expected values
calculated with the different possible models. We observe in
Figs. 6(a) and 6(b), where the data are compared with a thermal
and a squashed sampler, that these models do not provide an
accurate explanation of the collected samples, as confirmed by
the slopes of a linear fit corresponding, respectively, to ∼3.76
(thermal) and ∼2.28 (squashed). Conversely, the comparison of
the correlators with the expectations from a lossy SMSV GBS is
characterized by a better agreement between data and model,
as also quantified by the fitted value of the slope, equal to
∼0.94 and thus close to the ideal value of 1.

These final observations allow us to conclude that, among the
hypotheses tested in the above analysis, Borealis is likely to be
performing a genuine SMSV GBS with losses. For complete-
ness, we also analyzed some of the data from Ref. 5, using
the method based on graph feature vectors. The results are
shown in Fig. 7, where we show in red the experimental orbits
for the data corresponding to the lowest squeezing value of

0 50 100 150 200

Cov(ni, nj)Cov(ni, nj)

10 4

10 3

10 2

10 1

100

10 5

0 50 100 150 200

0 50 100 150 200 0 50 100 150 200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

(c)

(d)

(e)

(f)

0

50

100

150

200
0 50 100 150 200

0

50

100

150

200
0 50 100 150 200

Thermal
Cov(ni, nj)
Squashed (g)

(h)

Borealis

m
od

e 
i

mode j mode j mode j

mode jmode jmode j

m
od

e 
i

m
od

e 
i

m
od

e 
i

m
od

e 
i

m
od

e 
i

(a)

(b)

Fig. 5 Validation of Borealis samples. (a), (b) Comparison of the orbits of Borealis (red), thermal
states simulation (blue), squashed states simulation (orange), a second-order greedy sampler
with the ideal U transformation and no loss (purple) and with the effective transfer matrix and
loss (cyan), and coherent states simulation (green). The coherent, squashed, lossy greedy, and
thermal states simulations used the same parameters and device certificate of the Borealis runs.
All the points were calculated on a sample size of 250,000 shots with squeezing set to low.
(a) Borealis data collected on different days with different U transformations. Such runs display
a similar average number of detected photons and device certificates. (b) Borealis data collected
on the same day with different unitary transformations. On that day, the fluctuation in the average
number of detected photons between runs on Borealis was compatible with statistical fluctuations,
and the deviations of the average number of detected photons predicted by the simulations ac-
cording to the certificate with those measured on the device were small. (c)–(h) Comparison of
the covariances of lossy thermal states, lossy squashed states, and Borealis for a given trans-
formation U of the device. The same circuit parameters were used for the simulations and the
measurements with Borealis. The same device certificate was used for all the simulations.
(c) Covariance of the simulated thermal sampler with losses. (d) Covariance of the thermal sam-
pler with losses calculated from 250,000 samples, to reproduce the additional noise due to a lim-
ited number of samples. (e) Simulated covariance of a squashed light sampler with the losses of
the Borealis circuit. (f) Covariance of squashed light sampler from a finite sample of 250,000 shots.
(g) Simulated covariance of an SMSV GBS with losses. (h) Covariance of Borealis samples.
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Ref. 5. The simulated thermal (blue) and squashed (orange)
samples were generated according to the circuit parameters
of that time. It is worth noting that both the squeezing values
and losses are smaller than the latest run with Borealis shown
above. The orbits of the three models seem to be slightly more
separated in this set of experimental data, in accordance with the
expectation of a GBS device with reduced losses. The device
certificates for this case can be found in the Supplementary
Material.

6 Conclusions
In this work, we have analyzed the fundamental issue of assess-
ing the operation of noisy intermediate scale quantum devices.
More specifically, we have focused on the problem of GBS in
a noisy scenario that represents one of the most investigated ap-
proaches to demonstrate the achievement of the quantum com-
putational advantage regime. Here, we analyzed the capability
of a graph theory-based method to identify and exclude the main
noise source in a Gaussian boson sampler. As the test platform,
we have assessed the operation of Borealis, a large-scale pho-
tonic device that has been made available on the cloud. In par-
ticular, we analyzed its working principles and its performance
as a sampling machine of indistinguishable SMSV states.

To this end, we first compared the feature vector components
of the graph encoded in the device inspired by Ref. 50, namely,
the orbits of Borealis, with those of the lossy thermal sampler
and a lossless SMSV GBS. This method is effective even in the
quantum advantage regime as long as the number of detected
photons is much smaller than the number of modes. In such
a condition, satisfied in Borealis only for the low level of the
squeezing parameters, we investigated the effects of photon
losses in the orbits’ estimation. In particular, the main source
of noise in Borealis was a result of the amount of balanced loss.
Their effect is to move the orbits on the same hyperplane indi-
viduated by the data of indistinguishable thermal, squeezed, and
coherent light emitters. This allowed us to exclude with high
confidence the presence of significant photon distinguishability
in the device. The distribution on such a hyperplane of Borealis
data shows significant differences also with the points generated
by coherent light. The orbits of the simulated thermal and
squashed light are still close to the Borealis data instead. The
small deviations observed could be compatible with the discrep-
ancy between the device certificate employed to set the param-
eters of the simulations and the actual experimental conditions.
Additional analysis has been also discussed regarding the greedy
algorithm mockup, simulating samples having the correct
marginals up to a chosen order. As a further benchmarking of
the device, we evaluated the two-mode correlation functions44,45

Fig. 6 Two-point correlators. Scatter plot of two-point correlators Cij of samples collected from
Borealis (experiment) as a function of the corresponding values calculated with different possible
models for the device (simulation). Comparison with a (a) thermal sampler, (b) squashed state
sampler, and (c) lossy SMSV state GBS. Black dashed line: the expected trend for the ground
truth, corresponding to a linear function with a slope equal to 1. Colored dashed lines: trends
obtained by a linear fit of the data shown in each figure.

Fig. 7 Orbits of the data from the Borealis experiment of Ref. 5.
Red, the Borealis data; blue and orange, the simulated data from
the thermal and squashed samplers, respectively. The size of the
sample was ∼106. The points correspond to the number of de-
tected photons from 18 (from the right) to 32 (to the left). The
Borealis data are those of Fig. 3(a) of Ref. 5. The lines are those
we obtained from the thermal simulations in Fig. 4.
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summarized in the covariance matrix of samples. This last
analysis showed a significant deviation from a lossy thermal
sampler and a less pronounced, although still present, deviation
from the squashed sampler, and thus shows that, among the
class of hypotheses tested by the employed approach, Borealis
is likely to behave as a lossy SMSV GBS.

On the one hand, our analysis showed the effectiveness of the
orbits’method in noisy conditions and, in particular, its power in
highlighting the effect of the various contributions of photon
losses in GBS experiments. On the other hand, the observation
that the orbits generated by data collected from Borealis and by
thermal and squashed samplers underline possible limitations in
the use of the device for graph-related problems. More precisely,
our results showed that the collected feature vector components
can be approximated by a classical simulation with thermal
light, and using squashed light the simulation can be even closer
to the ones obtained from Borealis. Other recent works open
questions regarding the advantage of the use of a noisy GBS
device against simulation with classical simulative models for
the problem of graph max-clique and densest subgraphs.64,65

Due to the reduced connectivity of the circuits and the limited
range of the phase shifters achievable via the Borealis device,
we were not able to find a way to encode a meaningful graph
in the device, namely, an adjacency matrix with a submatrix of
significant size that is completely nonnegative (or nonpositive),
to test the machine in this context. Furthermore, the structure of
the device does not permit the encoding of graphs belonging to
different classes of isomorphism, thus preventing the use of the
graph’s feature vectors, associated with the measured orbits, for
graph similarity and isomorphism applications. Future perspec-
tives of our analysis regard a systematic study of noisy GBS
devices, such as Borealis for these graph-related problems, and
an investigation on whether the method for certification em-
ployed here can be extended to the original version of BS, in
light of recent studies of its connection with graph theory.66

Code and Data Availability
The code and data that support the findings of this study are
available from the corresponding author upon reasonable
request.
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