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Abstract. Visibility of optical coherence tomography (OCT) images can be severely degraded by speckle noise. A
computationally efficient despeckling approach that strongly reduces the speckle noise is reported. It is based on
discrete wavelet transform (DWT), but eliminates the conventional process of threshold estimation. By decompos-
ing an image into different levels, a set of sub-band images are generated, where speckle noise is additive. These
sub-band images can be compounded to suppress the additive speckle noise, as DWT coefficients resulting from
speckle noise tend to be approximately decorrelated. The final despeckled image is reconstructed by taking the
inverse wavelet transform of the new compounded sub-band images. The performance of speckle reduction and
edge preservation is controlled by a single parameter: the level of wavelet decomposition. The proposed technique
is applied to intravascular OCT imaging of porcine carotid arterial wall and ophthalmic OCT images. Results dem-
onstrate the effectiveness of this technique for speckle noise reduction and simultaneous edge preservation. The
presented method is fast and easy to implement and to improve the quality of OCT images. © 2013 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.18.9.096002]
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1 Introduction
Optical coherence tomography (OCT) is a noninvasive optical
imaging modality used to perform high-resolution cross-sec-
tional imaging of microstructures in biological tissues.1 It has
been playing an important role in aiding clinical diagnosis
such as in the field of cardiovasology and ophthalmology.2,3

Unfortunately, OCT images are subjected to various sources
of noises such as electronic and shot noises. Among them,
speckle noise,4,5 as a dominant source of noise, has deleterious
effects on OCTand degrades the discernibility of morphological
features. Speckle suppression is therefore highly desirable in the
situation of OCT imaging.

Previous studies devoted to address the problem of speckle
reduction can be generally classified into two categories: hard-
ware- and software-based techniques. Hardware-based
approaches, such as frequency,6 angular,7,8 and strain com-
pounding,9,10 rely on the uncorrelated speckle pattern between
different wavelengths, angles, or strains applied on the sample.
They are robust in speckle suppression, but not easily adapted
to standard commercial OCT units, as they require significant
modifications of the imaging system hardware. On the other
hand, the software-based techniques reduce speckle noise by
postprocessing the images. These algorithms include various dig-
ital filters,11 divergence regularization,12,13 as well as filtering in
the transform domain such as the wavelet.14–19 Among software-
based techniques, filtering in the wavelet domain is one of the

most promising approaches.14–19 The basic principle of wavelet
domain filtering is to shrink the associated coefficients by differ-
ent threshold values, based on the idea of soft thresholding20 or
data-adaptive thresholding strategies.14,15,18 However, it is a chal-
lenging task to find the optimal threshold for different images
with different properties, due to the ambiguity of optimal thresh-
old.15 In the case where the image noises have comparable wave-
let coefficients with those of the image signals, image signals can
be easily attenuated, if an improper threshold is applied. Other
data-adaptive thresholding strategies, such as spatially adaptive
wavelet filter,14 achieve a dramatically improved performance
of speckle reduction by taking advantage of the speckle proper-
ties. However, the involved complex algebraic operations in the
algorithm can be very computationally inefficient.

Here, we present a simple and computationally efficient
speckle reduction algorithm, wavelet domain compounding
(WDC), which avoids computationally inefficient data-adaptive
thresholding and ambiguous optimal threshold estimation. We
also investigate the performance of WDC on intravascular
OCT (IVOCT) images of carotid arteries and OCT images of
human retinal structures and discuss its potential applications.

2 Wavelet Domain Compounding
The WDC algorithm requires the following three-step proce-
dures:

Y ¼ WðXÞ Z ¼ CðYÞ S ¼ W−1ðZÞ; (1)
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where X is the original noisy image, Wð·Þ relates to the two-
dimensional discrete wavelet transform (2-D-DWT), and Cð·Þ
denotes the proposed compounding strategy applied to the wave-
let coefficient Y, which differs from the existing wavelet coeffi-
cient thresholding techniques.14–19 The obtained new coefficients
are denoted by Z. Finally, despeckled image S is obtained by the
2-D-inverse discrete wavelet transform (IDWT)W−1ð·Þ. It should
be noted that logarithmic transformation has to be performed
prior to this procedure to convert the multiplicative speckle
noise into the additive noise. More detailed descriptions of
each step are presented in the following sections.

2.1 2-D-DWT

2-D-DWT was used for image decomposition. In detail, the
speckled image is decomposed, and the sub-band components
are obtained, as shown in Fig. 1(a), where CA is the approxima-
tion component and CH, CV, and CD are the detail components
of the horizontal, vertical, and diagonal directions, respectively.
CAi, CHi, CVi, and CDi are the corresponding coefficients at the
decomposition level i. The orthogonal fourth-order Daubechies
wavelet was utilized as it has longer filter lags, which can help to
reduce the pixilation effect by bringing smoothing effects.16 The
purpose of doing wavelet decomposition is to decompose the
image speckle noise into different levels. Wavelet coefficients
corresponding to true edge features tend to cluster spatially
across multiple decomposition levels, whereas coefficients
resulting from the speckle noise tend to be approximately decor-
related.14,21 Because the multilevel DWT is a linear transform,
speckle noise, which is additive in logarithmically processed
OCT images, is still additive in the wavelet domain. The
sub-band images, therefore, can be compounded across different
decomposition levels to achieve speckle reduction by
averaging.5

2.2 Compounding

Figure 1(b) shows the proposed compounding strategy flow-
chart for a multilevel (three-level in the figure) 2-D wavelet

analysis. For convenience of illustration, the detailed coeffi-
cients at the decomposition level of i, CHi, CVi, and CDi,
are represented by CSi. However, CHi, CVi, and CDi are handled
separately, and any operation on the CSi is equivalent to the
operation on CHi, CVi, and CDi, respectively. Assuming that
three-level 2-D-DWT is performed, the compounding strategy
Cð·Þ in Eq. (2) has the following detailed procedures [denoted
by dashed arrows in Fig. 1(b)].

1. Interpolation: The algorithm starts from the highest
decomposition level (level 3 in Fig. 1). The resolution
of each level is different, and the number of pixels in
current level i is half of that in previous level i − 1.
Therefore, CA3 is first up-sampled by bilinear interpo-
lation22 to have the same size as CA2.

2. Fusion: The up-sampled version of CA3 will then be
fused with CA2 with a new sub-band generated, which
is represented as CA2

0. The detailed fusion process is
comprised of the following three substeps:
(a) Average: The up-sampled versions of CA3 and
CA2 are first averaged to suppress the speckle noise.
The wavelet coefficients of speckle noise in CA3 are
approximately decorrelated with that in CA2.
Therefore, it can be effectively suppressed by averag-
ing,5,13 as speckle noise becomes additive after loga-
rithmic transformation. The coefficient after averaging
is represented as CA2a. (b) Geometric mean:
Geometric mean of the pixel values in the up-sampled
versions of CA3 and CA2 are taken to preserve the res-
olution at the decomposition level of 2.23 The resultant
coefficient is represented as CA2m. The reason for
choosing to apply geometric mean operation is that it
maintains approximately the same pixel values as in
the original images and has a good capability in pre-
serving edge features.23 (c) Average: The CA2a and
CA2m are then combined together by averaging to
achieve simultaneous speckle suppression and

Fig. 1 (a) Ordering of the approximation and detailed coefficients of a three-level two-dimensional discrete wavelet transform (2-D-DWT) and (b) step-
by-step flowchart of the proposed method (three-level DWT). Solid arrows represent 2-D-DWT. Dashed arrows represent the procedure for com-
pounding process and 2-D-IDWT.
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resolution preservation, and the new generated coeffi-
cient is represented as CA2

0. The above steps can be
expressed as

CA2
0 ¼ ðCA2aþ CA2 mÞ∕2

¼
�
ðCA3þ CA2Þ∕2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CA3 � CA2

p �
∕2:

3. Iteration: The new approximation coefficients CA2
0

experience the same interpolation and fusion processes
as CA1. The interpolation and fusion processes are
performed iteratively until the first level. The new
approximation coefficients obtained are denoted by
CA1

0. The same procedures are applied to CH3, CV3,
and CD3, respectively, until the new coefficients CH1

0,
CV1

0, and CD1
0 are obtained.

After the above stage of compounding, speckle noise will be
effectively reduced in the wavelet domain. This stage achieves
the same goal as the thresholding stage for the conventional
wavelet-based thresholding techniques, which reduce the
speckle noise by thresholding the transformed coeffi-
cients.14,16–18

2.3 2-D-IDWT

CA1
0, CH1

0, CV1
0, and CD1

0 correspond to a sub-band compo-
nent with speckle noise significantly reduced. At last, single-

level 2-D-IDWT is performed directly on CA1
0, CH1

0, CV1
0,

and CD1
0 to reconstruct a despeckled image.

3 Results and Discussions

3.1 Feasibility of WDC

To demonstrate the effectiveness of the proposed WDC algo-
rithm, we imaged a human fingertip in vivo using a swept-source
OCT system operating at the center wavelength of 1550 nm.24

The obtained image, as shown in Fig. 2, has an axial resolution
of ∼12 μm.

Figure 2(a) shows the original fingertip image, and Fig. 2(b)
demonstrates the despeckled fingertip image processed by the
proposed WDC method. Results show substantial smoothing
of the grainy appearance due to the existence of speckle noise
and enhanced visualization of structures such as sweat glands
indicated by white arrows. It should be noted that strong speckle
reduction is applied in order to greatly enhance the discernibility
of the sweat glands from the surrounding speckle noise, and one
can observe some blurring effects consequently. The blurring
effect can be reduced by applying slight speckle reduction.
However, slight speckle reduction will in turn reduce the visibil-
ity of the sweat glands. The trade-off between speckle reduction
and edge preservation will be discussed in detail in the sub-
sequent sections.

To further explain the effects of each stage of the algorithm
on the output, we show the sub-band images obtained after the
compounding step (bottom row in Fig. 3). For comparison, we
also show the corresponding sub-band images by applying sin-
gle-level 2-D-DWT to the original image (top row in Fig. 3). As
shown in Fig. 3, compared with the original sub-band images,
the newly obtained sub-band images show clear speckle reduc-
tion. Moreover, the edge information is also preserved at the
same time. It indicates that the compounding step can effectively
reduce speckle noise in the wavelet domain with simultaneous
edge preservation.

3.2 WDC for IVOCT

Subsequently, in order to demonstrate the applicability of the
proposed WDC algorithm to reduce speckle noise in the context
of intravascular imaging where the visibility of image morpho-
logical structures is severely deteriorated by speckle noise,
in vivo intravascular OCT imaging of porcine carotid artery
image was obtained using a commercial Lightlab C7-XR
Fourier Domain OCT system. The details of animal imaging
protocol have been previously described by Cheng et al.13

The original rotary scanning image (1937 × 1937) and the

Fig. 2 (a) Fingertip image without despeckling and (b) despeckled fin-
gertip image. Arrows point to sweat glands.

Fig. 3 Sub-band images of the original fingertip image after wavelet decomposition (top row). Obtained sub-band images after the compounding
process (bottom row). A: approximation sub-band; H: horizontal sub-band; V: vertical sub-band; and D: diagonal sub-band.
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despeckled image based on the proposedWDCmethod are dem-
onstrated in Figs. 4(a) and 4(c), respectively. The image proc-
essed by wavelet-based soft global thresholding20 is also showed
in Fig. 4(b) for comparison. All analyses were executed on an
Intel Core i5-750, 2.67-GHz desktop personal computer using
MATLAB 7.11.0 (MathWorks, Natick, Massachusetts).

Most of the features were well preserved in the despeckled
image. The grainy appearance was mostly smoothed, which
makes some hidden features in the original image more obvious.
The distinctive ring structure encircling the vessel lumens are
the arterial vessel walls. The external elastic lamina, as pointed
by the white arrow in Fig. 4(c), is visualized with a much clearer
discernibility after speckle reduction. The media-adventitia bor-
der is also obviously observed in the despeckled image. For
comparison, we have also performed conventional wavelet-
based soft global thresholding,20 as shown in Fig. 4(b). The
threshold is chosen to be 2.4 times the noise variance, which is
obtained from the robust median estimator of the highest sub-
band of the wavelet transform.20,25 It should be noted that the
number 2.4 is chosen to obtain the optimal trade-off between

speckle reduction and edge preservation. The detailed proce-
dures have been described in other reports.13,14 In brief, by
examining the trend of the speckle reduction performance [such
as contrast-to-noise ratio (CNR)] and edge preservation param-
eter for various choices of threshold and choosing the optimal
trade-off point, the number 2.4 is obtained. For the subsequent
images, the optimal thresholds for different images are different,
but the method finding the optimal threshold follows the above-
discussed way.

To better appreciate the performance of the WDC on speckle
suppression, Fig. 5 shows the enlarged view of the green region
of interest (ROI) for the original image, image after speckle
reduction based on soft global thresholding, and image after
speckle reduction based on the proposed WDC, respectively.
The despeckled image based on WDC is much clearer than the
original one. Most importantly, this is achieved when the image
edge sharpness is well preserved demonstrating its ability of the
algorithm to preserve the signals, while attenuating speckle
noise. Structures with clearer visualization are indicated by
red arrows in Fig. 5(c). While Fig. 5(b) may also achieve

Fig. 4 (a) Original intravascular optical coherence tomography (IVOCT) image of porcine carotid artery. Yellow rectangle indicates the noise region
used in the metrics calculation. Green rectangle indicates the zoomed region in Fig. 5. Red rectangle indicates the signal regions. Blue rectangles are
used for equivalent number of looks (ENL) calculations; (b) despeckled IVOCT image of porcine carotid artery based on the soft global thresholding;
and (c) despeckled IVOCT image of porcine carotid artery based on the proposed wavelet domain compounding (WDC). For direct comparison, the
images are shown on the same gray scale.

Fig. 5 (a) Enlarged view of the green region of interest (ROI) in the original image; (b) despeckled image processed by wavelet-based soft global
thresholding method; and (c) despeckled image processed by the proposed WDC algorithm. The red arrows indicate structures with clearer discern-
ibility in the processed image.
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comparable speckle reduction, it shows reduced edge preserva-
tion compared with Fig. 5(c). When the soft global thresholding
technique is employed, speckle noise may be further reduced by
setting a larger threshold, but at the cost of edge preservation.

The output of the proposed speckle reduction algorithm is
dependent on three main parameters: (a) the wavelet type
used for the wavelet decomposition, i.e., Daubechies (db) and
symlets (sym), (b) the interpolation method for up-sampling,
i.e., linear and cubic, and (c) the level of the wavelet decompo-
sition. The effects of the level of the wavelet decomposition will
be discussed in detail in the following section. For the first two
parameters, we have tried to vary the wavelet bases and inter-
polation methods to study the possible effects on the final out-
put. While both the wavelet type and the interpolation method
would affect the final speckle reduction performance, results
indicate that different wavelet bases or different interpolation
methods did not have a noticeable change in the image quality.
There was no observable difference in the image quality in terms
of wavelet types or interpolation methods. This also agrees well
with what has been observed for the conventional wavelet-based
thresholding techniques, which is that the most important factor
in wavelet denoising is the decomposition level rather than the
wavelet or threshold type.26

To quantitatively evaluate the performance of the proposed
algorithm, image quality metrics were calculated over ROIs
including high signal regions (media), low signal regions
(adventitia), and a noise background, which have been depicted
in Fig. 4(a). The CNR was defined as CNR ¼
10 logðμr − μbÞ∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2b

p
, and the equivalent number of

looks (ENL) was defined as ENL ¼ μ2r ∕σ2r , where μr and μb
are the mean of the intensity from a set of ROIs and a back-
ground noise region, respectively. σr and σb are the standard
deviation of the intensity over the ROIs and the background
noise region, respectively. The CNR measures the contrast
between image features [red and blue ROIs in Fig. 4(a)] and
an area of background noise (yellow ROI), while the ENL mea-
sures smoothness in areas, which should have a homogeneous
appearance (blue ROIs).14 The metrics were calculated as the
average over the ROIs used. In addition, the global signal-to-
noise ratio (SNR) was calculated as SNR ¼ 10 log½max ðXlinÞ2∕
σ2lin�, where Xlin is the 2-D matrix of pixel values in the OCT
image and σ2lin is the noise variance, both on linear intensity
scales. An edge-preserving parameter, ρ, was calculated as15

ρ ¼ ΓðΔI − Δ̄I;ΔI 0 − Δ̄I 0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðΔI − Δ̄I;ΔI − Δ̄IÞΓðΔI 0 − Δ̄I 0;ΔI 0 − Δ̄I 0Þ

q ;

(2)

where I and I 0 refer to the signal regions (red and blue ROIs) in
the original and denoised image, respectively. The operator Δ is
a Laplacian operator. Ī denotes the mean value of I. The operator
Γ denotes correlation inside the signal ROIs and

ΓðI1; I2Þ ¼
X

ði;jÞ∈ROI
I1ði; jÞI2ði; jÞ: (3)

The value of ρ ranges between 0 and 1. The larger the param-
eter, the more edges are preserved. ρ should be close to unity for
an optimal effect of edge preservation. For the values of SNR,
CNR, and ENL, there are no upper bounds. In the situation of
OCT speckle reduction, a larger value of SNR, CNR, or ENL

indicates a better image quality and better speckle reduction
performance.

Table 1 shows image quality metrics for the original and des-
peckled images with i varying from 2 to 8. In all cases, the SNR,
CNR, and ENL showed improvement compared with the origi-
nal image. The level of decomposition i governs the perfor-
mance between speckle reduction and edge preservation
parameter.

The WDC algorithm showed effective speckle reduction on
OCT imaging of human fingertip and carotid arteries. As the
implementation of the algorithm WDC relies on DWT in
MATLAB, there is a maximum wavelet decomposition level
for the processed image. Whereas a wavelet decomposition
level can be set to any positive integer value in the algorithm,
it is still necessary to obtain the maximum level of wavelet
decomposition for a specific image as it can help to avoid unrea-
sonable levels of decomposition beyond the maximum one. The
maximum level of decomposition is determined by the size of
the original image and the wavelet we choose. The rule for com-
puting the maximum decomposition level is the last level for
which at least one coefficient is correct.27 The mathematical
rationale is that if we want to ensure at least one coefficient
is correct, we have to satisfy ðlw − 1Þ × 2lev < lx, where lw is
the length of the wavelet filter, lev is the maximum decompo-
sition level, and lx is the size of the input signal. For the dem-
onstrated image size of IVOCT image of the porcine carotid
artery and the chosen wavelet, a maximum level of wavelet
decomposition imax is 8, where i denotes the level of 2-D wave-
let decomposition. The level i may vary in order to obtain the
best speckle reduction performance with minimum edge preser-
vation degradation. Figures 4(a) and 4(c) show the original
carotid artery image and the image after speckle reduction proc-
essed by the proposed WDMmethod at the decomposition level
of i ¼ 7, respectively.

Edge preservation may be compromised in the process of
speckle reduction with a small 8.7% loss of edge sharpness
as shown in Table 1. More levels of wavelet decomposition
do not necessarily produce better results as it is expected that
it may unavoidably cause degradation of the image edge sharp-
ness as more levels of interpolation and image fusion process
(multiplication) are also involved. There is, therefore, a trade-
off between speckle reduction and edge sharpness preservation.
The level of wavelet decomposition i acts as an adjustable
parameter that controls the trade-off between speckle reduction
and edge preservation. Such adjustment is needed, when one

Table 1 Image quality metrics.

SNR (dB) CNR (dB) ENL Edge preservation

Original 49.70 7.68 104 N/A

Level i ¼ 2 57.12 10.28 232 0.551

Level i ¼ 4 64.23 12.42 498 0.876

Level i ¼ 6 64.73 12.55 516 0.897

Level i ¼ 7 64.54 12.53 505 0.913

Level i ¼ 8 64.56 12.59 620 0.869

Soft thresholding 62.75 12.37 420 0.830
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wants to see different features such as in the case of evaluating
atherosclerotic plaques or neovascularization.13 As shown in
Table 1, the edge preservation parameter increases at the begin-
ning as i increases, and then drops with further increase of i,
while the CNR and ENL increase (improve) as i increases, and
then head toward a “saturate” state beyond that level. This
behavior agrees well with the above discussions. Therefore, a
wavelet decomposition level of 7 is believed to be optimal to
achieve the best performance between speckle reduction and
edge preservation for the demonstrated carotid artery image.

For comparison, the performance of the wavelet-based soft
global thresholding speckle reduction technique is also shown in
the Table 1. Comparing with wavelet-based soft global thresh-
olding method, the proposed WDC method is superior as it can
reduce more speckle noise without significant edge preservation
compromise, whereas the speckle reduction based on the soft
global thresholding method results in more edge distortion. It
is also interesting to point out that optimizing the threshold
of soft global thresholding techniques may require highly
knowledgeable personnel to perform, as indicated by the pre-
vious discussions, while the implementation of the WDC
method requires almost no human intervention as the perfor-
mance controlling parameter is only the decomposition level.
It, from another perspective, shows the advantage of the
WDC method over conventional wavelet-based methods for
its relatively simple comfortable range of trade-off control.
More complex wavelet-based despeckling schemes, such as spa-
tially adaptive wavelet filter, may preserve the edge well with a
comparable speckle reduction performance; it, however, can be
computationally inefficient, taking up to ∼7 min.14 In contrast,
the proposed WDC method provides comparable image quality
with significantly less processing time, taking ∼2 s. The com-
putation time increases slightly with the increasing decomposi-
tion levels, and the processing time for the maximum

decomposition levels is only 2.1 s. Without resorting to complex
and computationally inefficient wavelet-based data-adaptive
schemes, the presented WDC methods can be expected to be
used in many applications. Besides, future implementation in
C++ and/or GPU parallel processing may be useful to perform
real-time speckle reduction for IVOCT application, in which
case, soft global thresholding, however, may not be possible as
the speckle pattern fluctuates significantly between B-mode
frames due to motion artifacts13; and thus the optimal threshold
chosen for the soft global thresholding will differ in between
B-mode frames.

3.3 WDC for Clinical Applicability of IVOCT

As a demonstration of clinical applicability, Figs. 6(a) and 6(c)
gives OCT images of a stented porcine carotid artery before and
after denoising by the proposed WDC method, respectively.
Figure 6(b) shows the corresponding despeckled image by
wavelet-based soft global thresholding technique for compari-
son. Parameters (threshold value) were adjusted, so that the
ENL metric of Figs. 6(b) and 6(c) were the same. The structure
of the vessel wall and the struts of the stent are more observable
in Figs. 6(c) than in 6(b). As pointed by arrows in Fig. 6(c), these
structures show a clearer visualization after denoising. The des-
peckled image clearly depicts stent apposition. The degree of
apposition of the stent to the vessel wall can also be clearly dis-
cerned. This further justifies that the WDC method is robust in
the application of intravascular OCT systems.

3.4 WDC for Ophthalmic OCT

We also applied the proposed WDC technique to other OCT
images and obtained similarly good results. The example is
illustrated in Fig. 7 for an in vivo image of human retinal

Fig. 6 (a) Original stented image; (b) despeckled image processed by wavelet-based soft global thresholding method; (c) despeckled image processed
by the proposed WDC algorithm. Images are shown on the same gray scale. The red arrows point to structures with clearer discernibility in the
processed image. The scale bar represents 1 mm.

Fig. 7 (a) Original retina image; (b) despeckled image processed by the wavelet-based soft global thresholding method; (c) despeckled image processed
by the proposed WDC algorithm. Images are shown on the same gray scale. The red arrows point to structures with clearer visibility in the processed
image. The scale bar represents 0.5 mm.
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structure obtained by a spectral domain OCT (SD-OCT) system.
The SD-OCT system (Vivolight LTD, China) uses a superlumi-
nescent diode of 840 nm and allows the capture of 30,000
A-scans∕s. The axial and lateral resolutions are 8 and 15 μm,
respectively. The sensitivity is 102 dB with 800-μW light inci-
dent on the sample. The despeckled image in Fig. 7(c) shows the
ability of the proposed WDC method to reduce speckle noise in
the ophthalmic OCT images. For comparison, the despeckled
image by wavelet-based soft global thresholding technique is
also shown in Fig. 7(b). For the same speckle reduction perfor-
mance [the ENL metric of Figs. 7(b) and 7(c) is the same], we
can observe that the proposed WDC method outperforms the
wavelet-based soft global thresholding in the edge preservation.
As indicated by red arrows, the retinal layer structures in
Fig. 7(c) are more discernible than those in Fig. 7(b). This sug-
gests that theWDC is applicable in the ophthalmic OCT systems
as well, which justifies the feasibility of the WDC method in the
OCT image speckle reduction.

4 Conclusion
In conclusion, we proposed and demonstrated a simple and
computationally efficient speckle reduction approach for OCT
images. The proposed WDC method is based on wavelet trans-
form, but circumvents the process of ambiguous soft-threshold-
ing estimation concept for conventional wavelet-based
despeckling schemes. In addition, the WDC method overcomes
the limitations of data adaptive wavelet filter, namely computa-
tional inefficiency, by providing a comparable image quality in
significantly less processing time. Results show substantial
reduction of speckle noise with edge features well preserved
for the intravascular carotid artery and retinal images. The pre-
sented method may be implemented in current OCT systems to
help clinical diagnosis such as in intravascular OCT systems for
diagnosing and monitoring patients with carotid artery-related
diseases and in ophthalmic OCT systems for diagnosing retinal
pathology.
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