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Abstract. Aerial images acquired by multiple sensors provide comprehensive and diverse
information of materials and objects within a surveyed area. The current use of pretrained
deep convolutional neural networks (DCNNs) is usually constrained to three-band images
(i.e., RGB) obtained from a single optical sensor. Additional spectral bands from a multiple
sensor setup introduce challenges for the use of DCNN. We fuse the RGB feature information
obtained from a deep learning framework with light detection and ranging (LiDAR) features to
obtain semantic labeling. Specifically, we propose a decision-level multisensor fusion technique
for semantic labeling of the very-high-resolution optical imagery and LiDAR data. Our approach
first obtains initial probabilistic predictions from two different sources: one from a pretrained
neural network fine-tuned on a three-band optical image, and another from a probabilistic clas-
sifier trained on LiDAR data. These two predictions are then combined as the unary potential
using a higher-order conditional random field (CRF) framework, which resolves fusion ambi-
guities by exploiting the spatial–contextual information. We utilize graph cut to efficiently infer
the final semantic labeling for our proposed higher-order CRF framework. Experiments per-
formed on three benchmarking multisensor datasets demonstrate the performance advantages of
our proposed method. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.016501]
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1 Introduction

Classification of aerial imagery has been one of the central tasks in many remote sensing appli-
cations, e.g., environmental assessment and monitoring, city planning, and land cover change
detection. Typical methods for classifying these types of images follow a bottom-up approach in
which information is processed sequentially from pixel-to-object level. Pixel-wise image
processing techniques are suitable for aerial images with a lower spatial resolution, where
the region of interest includes natural terrains of a large area of, for example, forests, water
bodies, grass, and tree canopies. With the advance in sensor technology, very-high-resolution
(VHR) aerial images are now readily available and enable the extraction of fine details with
a ground spatial resolution of about 10 cm. Using VHR aerial imagery, state-of-the-art deep
learning and structured prediction methods can be utilized to generate dense semantic segmen-
tation. For instance, methods based on Markov random fields (MRFs) for classification1–4

have been proposed to perform land cover mapping utilizing the enhanced spatial contextual
information in VHR images.
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The remarkable success of deep learning and, in particular, convolutional neural networks
(CNNs) on achieving state-of-the-art results in computer vision tasks has motivated researchers
to apply these methods to other fields, such as remote sensing. However, training deep neural
networks typically require extensive labeled datasets. Unfortunately, obtaining ground truth for
aerial images that span large areas can be expensive and unfeasible. Although there has been an
increase in the number of publicly available labeled datasets in remote sensing, researchers have
overcome the issue of limited ground truth using a large labeled dataset that has similar char-
acteristics to pretrain a neural network, most commonly object detection trained on the ImageNet
dataset. After that, one or more convolutional layers of the pretrained network are fine-tuned on
aerial data.5–9 Despite the difference in viewing perspective and object scale between ImageNet
and aerial images, this approach called transfer learning has shown to achieve higher classifi-
cation performance10 compared with competing methods, such as support vector machines and
random forests. Transfer learning has also shown excellent results in other applications such as
vehicle detection11 and scene classification12 from remote sensing data.

In aerial remote sensing data, the scene image is captured from above, at either an oblique
angle or directly from nadir. Because of this limited field of view, it can be challenging to dis-
criminate objects and materials at the ground level just by looking at their appearance. For exam-
ple, some flat rooftops can have similar color and spatial shape as those of impervious surface
(shown in Fig. 1). To address this challenge, we make use of a different sensing modality that can
measure complementary information that can be used to discriminate ground objects with similar
color characteristics. Light detection and ranging (LiDAR) systems can provide relevant height
information. Combining aerial optical images and georeferenced LiDAR data can provide a bet-
ter representation of a given scene. However, this multisensor imagery data pose a challenge to
the use of pretrained deep networks for image classification and object detection, which are
typically trained using only RGB bands. Developing deep networks for combining optical
images (e.g., RGB and IR) and LiDAR data has become a hot research topic in remote sensing.
An approach to address this challenge is to train two separate neural networks, one to process the
optical images and the other to process the corresponding LiDAR data. The raw three-dimen-
sional (3-D) point cloud from LiDAR data needs to be preprocessed to be represented as a three-
band image, typically using a digital surface model, height variation, and surface norm. The
learned features from the two neural networks can then be concatenated, e.g., using a convolu-
tional layer. This approach performs feature-level fusion.5,7 However, training two separate neu-
ral networks can be computationally expensive and may present poor performance in scenarios
where either color or geometry has low local variability. Also, the robustness of training the false
three-band LiDAR images is still under investigation.

We propose a fusion approach for combining and exploiting high-resolution optical imagery
and corresponding LiDAR data. Our proposed method requires less training time and resources
(see Sec. 4.2 for details) to achieve competitive classification results in comparison with state-of-
the-art neural networks. The overall flowchart of our proposed method is shown in Fig. 2.

(a) (b) (c)

Fig. 1 (a) RGB orthophoto from the Zeebruges dataset; (b) Zoom-in of an area with rooftops and
impervious surface, image patches appear very similar in both color and texture; (c) LiDAR nDSM
map (derived from ENVI using point cloud) of the same area. Intensity values indicate the relative
elevation of each pixel. The yellow patches are indistinguishable in the color image but have
distinct heights.
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We generate two separate initial probabilistic predictions from the optical imagery, using fully
convolutional networks (FCN), and the LiDAR data, using multinomial logistic regression
(MLR). We then combine the initial predictions as unary potential functions modeled as a condi-
tional random field (CRF). Instead of using only pixel-level estimates, we propose to use seg-
ments obtained using a gradient-based segmentation algorithm (GSEG)13 in a higher-order CRF
model. We apply the robust PN Potts’ model as higher-order potential functions, which can
enforce label consistency within segments. Inference in higher-order CRFs to predict final labels
can be done efficiently using graph cuts. The main advantages of higher-order CRFs in our
proposed method are (1) to resolve decision ambiguity between the two initial estimates by
enforcing label consistency at the local and global levels simultaneously and (2) to preserve
local object boundaries based on a robust segmentation algorithm.

This paper is an extended version of our recently published conference paper,14 the original
contributions of this paper are: (1) a higher-order CRF model for efficient decision-level multi-
sensor semantic segmentation of aerial images and (2) a thorough study of advantages and
limitations of the robust higher-order Potts’ model for remote sensing image classification.
In addition, in this paper, we tested our method on two more datasets and did a more detailed
analysis based on the experimental results of these two datasets. We also added experimental
results of applying different segmentations and classifiers, which shows our proposed framework
can be easily integrated with various current state-of-the-art classifiers and segmentation meth-
ods. The results are promising compared with other state-of-the-art methods.

The rest of this paper is organized as follows: in Sec. 2, a brief review of recent developments
of DCNNs and CRFs on remote sensing images is presented. The proposed method is described
in Sec. 3. Benchmarking results on three publicly available multisensor datasets are provided in
Sec. 4. In Sec. 5, we thoroughly discuss the empirical performance and practical issues of our
proposed CRF model. Finally, conclusions are presented in Sec. 6.

2 Related Works

Over the last decade, significant research has been done on semantic segmentation of aerial
imagery. Some of the important methods are described in the review papers by Gómez-
Chova et al.15 and Debes et al.16 In the following section, we will discuss some recent develop-
ments on the multisensor classification of optical imagery and LiDAR data.

DCNN

MLR

GSEG

Unary 
potential

Pairwise 
potential

Higher-order 
potential

Inference

Higher-order CRF

+

+

Fig. 2 Proposed decision-level multisensor semantic segmentation method.
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2.1 Deep Convolutional Neural Networks

Recent research has shown that neural networks trained on general image categorization tasks
can be used as feature extractor for aerial imagery,8,17 even though the viewing perspectives of
overhead imagery and general images are quite different. This has allowed scene classification,12

vehicle detection,11 tree species mapping,18 and road detection19 in aerial images. The algorithms
are applied on patches or tiles of the large aerial images as opposed to the entire image.

In deep convolutional neural networks (DCNNs), downsampling operation, e.g., max pool-
ing, is performed after convolutional layers to capture the longer range contextual information
and extract more abstract features. The downsampling process usually leads to coarse labeling or
prediction at a lower spatial resolution. Fully convolutional neural networks (FCNNs) have been
proposed to improve the coarse classification results and achieve dense end-to-end prediction. In
Ref. 20, the authors proposed a skip architecture that combines semantic information from a
deep, coarse layer with appearance information from a shallow, fine layer to produce accurate
and dense semantic segmentation. Figure 3 shows the detailed architecture of FCN-8s skip net-
work. In Ref. 21, authors proposed a semantic pixel-wise segmentation method called SegNet
that utilizes deconvolutional decoder layers to map low-resolution encoder features to full input
resolution features. The authors in Ref. 22 utilized an atrous convolution method to expand the
support of the filter and removed most of the down-sampling operations to obtain dense labeling.
These approaches have been successfully adapted to the dense semantic labeling of remote
sensing images5,6,23 and outperform the traditional pixel-level classification methods (such as
SVMs24) that employ hand-crafted feature descriptors. In our paper, we adopt the FCN in
Long et al.20 paper as our pretrained network and fine-tuned it using the VHR optical imagery
with a two-stage training scheme. We utilized the per pixel probability output from the network
as one of the local potential functions in our higher-order CRF framework.

2.2 Conditional Random Fields

In CRF models, each pixel is assigned a label by examining its color or spectral characteristics
and also spatial relations. Pixels of an object can have complex local or global dependencies. For
image classification, in general, two important assumptions are made with regard to spatial
smoothness and contextual coherence: (1) neighboring pixels tend to belong to the same class
except on the object boundaries. (2) adjacent pixels/objects from natural images must follow
a certain practical meaning, e.g., the car is more likely found on the ground than on a tree.
CRFs can be used to model these dependencies at a local and global scale. These energy-
based random field methods have been widely used for exploiting contextual information

Fig. 3 Proposed FCN-8s architecture with two skip layers. This network architecture learns to
combine coarse, deeper layer information with fine, shallow layer information. It combines predic-
tions from the final layer and the pool4 layer to generate a finer prediction. Including the output
from pool3 can provide an even more detailed prediction.
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for both computer vision and remote sensing images.1–3,25–28 The full potential of the random
field methods has not been realized due to the limitation of inference methods for higher-order
node connections, particularly for the large-scale data. Recently, research has been done to
employ higher-order random fields with efficient inference methods.29–33 The robust higher-
order potential and graph cut inference method29,30 has stood out due to its efficiency on the
relatively large-scale dataset and the state-of-the-art semantic segmentation performance.
It has been applied to the remote sensing applications such as road and rooftop extraction.25,26

2.3 Multisensor Classification

There are two commonly used fusion techniques for the classification of multisensor images. In
one methodology, features are initially extracted from all imaging modalities and then fused
together by concatenation or selection. The combined features are then utilized in a supervised
training scheme to obtain a label map.34 In the second fusion method, classification results are
initially obtained for each imaging modality, and then these predictions are merged to achieve an
optimal output (referred to as decision-level fusion35–37). Sherrah5 trained two separate neural
networks for each modality and concatenated the learned features at the last convolutional layer.
In Ref. 7, multiple predictions from individual modalities are averaged. They also introduce a
network that combines features at the final layers by a residual correction framework. The later
network achieved slightly better quantitative results in comparison with the averaging of out-
comes. Recent research in Audebert et al.38 provides a solid investigation of applying early and
late fusion in deep neural networks for LiDAR and multisepctural data.

Authors in Ref. 39 represent all the bands of multisensor data as a single image and utilize it
to train a multiresolution CNN. They also extract hand-crafted features from the image to train a
second classifier. They combine the individual results at a decision-level. Our proposed method
differs from the previous algorithm in three different aspects. First, we apply fully convolutional
neural networks only on the three bands (optical imagery) of multisensor data, whereas in their
work, the input is a combination of all bands (requires training of neural network from random
initialization). As our network uses only three bands, pretrained network weights could be fine-
tuned with existing limited ground truth. Next, we learn the weight parameters to combine indi-
vidual probabilistic outputs in a CRF framework using training data. Their approach combines
results from two classifiers directly in a rigid way. Lastly, our method uses a higher-order CRF
model, whereas their model uses only standard unary and pairwise potentials.

3 Methodology

Our proposed method consists of four major steps: (1) obtain two probabilistic predictions for
optical images and LiDAR data, respectively, using DCNNs and MLR, (2) formulate the energy
function of the higher-order CRF with the previous two predictions as unary potential, and robust
PN Potts model as the higher-order potential, (3) generate segments for the given imagery, and
(4) train all the parameters in CRF-based algorithm and then obtain the image classification
results using graph cut inference method. The details of each step are discussed below.

3.1 Deep Fully-Convolutional Neural Network

VHR optical imagery provides rich low-level and high-level features. To fully take advantage of
such information, we used features from neural networks to generate high-resolution per class
probability prediction. Pixel-wise semantic segmentation of an image through neural networks
was initially proposed by Long et al.20 by extending a popular image classification neural net-
work named VGG-16. The VGG-16 network consists of multiple convolutional layers followed
by two fully connected and a final scoring layer. The last layer acts as a classifier to give scores to
different predefined objects. The authors in Ref. 20, in their work, modified the fully connected
layers to add spatial support and thereby generate the labels for each pixel. Specifically, the
output of the fully connected layer has dimensions of n × n × 4096 instead of 1 × 4096,
where n indicates the size of the down sampled spatial support of the fully connected layer.
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They called the resultant network the fully convolutional neural network (FCN). FCN-8s con-
tains five layers with multiple convolutions and rectified linear activation functions. Each of
these layers is succeeded by a max pooling (downsampling) operation. The architecture is
shown in Fig. 3. The sixth and seventh layers are two fully connected convolutional layers.
The eighth convolution (score) layer generates outputs corresponding to the number of classes
in the ground truth. Upsampled outputs from the eighth layer are combined with the outputs from
pool 4 layer. The result is again upsampled and merged with pool 3 layer outputs. Fusing the
output of pool 3 and pool 4 layers (skip connection) assists in obtaining finer semantic labels.
The fine-tuned network was then used to generate per pixel probability maps, which are denoted
as PFCN.

One of the FCN-8s classification results and its corresponding error map are shown in
Figs. 4(c) and 4(g). We notice that part of the rooftops is misclassified as impervious surface.
This demonstrates that objects and land covers sometimes can have very similar spectral and
spatial characterizations in aerial imagery and thus FCN-8s is not able to correctly distinguish
them. Fortunately, LiDAR data provide us the complementary information, i.e., elevation,
to improve the performance of classification.

3.2 Multinomial Logistic Regression

The LiDAR data are provided as normalized digital surface maps (nDSMs), which contain lim-
ited contextual information in comparison with the VHR optical imagery. Previous works dem-
onstrated that training an additional neural network on the LiDAR data can increase the overall
performance of the classification task. We, however, hypothesize that utilizing an efficient linear
classifier shall be sufficient to take advantage of the LiDAR information. In our work, we employ
an MLR on hand-crafted features derived from both LiDAR data and optical imagery. MLR
has been used in numerous remote sensing classification tasks,40 and it can produce multiclass
probabilistic estimates. More importantly, MLR is fully probabilistic, therefore it provides
calibrated probabilities off-the-shelf, whereas SVM and random-forest require postprocessing
to compute multiclass (e.g., one versus all) and probabilities (Platt method41 using cross vali-
dation). The probability that a pixel xi belongs to a particular category c can be calculated as
follows:

(a) (b)

(e)

(d)(c)

(f) (g) (h)

Buildings:

Cars:

Trees:

Low veg.:

Imp. surf:

Others:

Fig. 4 Classification results of ISPRS Potsdam dataset 4_15 and their corresponding error maps.
(a) Color-infrared images, (b) classification results of MLR using LiDAR features, (c) classification
results of FCN-8s using IR, R, and G channels, (d) classification results of our proposed method,
(e) normalized DSM map, (f) segmentation map obtained from the segmentation algorithm.
(g) and (h) Corresponding error maps for (c) and (d), respectively, where red pixels indicate
misclassifications.
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whereM is the number of categories, K is the number of features, βck is a vector of weights, and
Zi;k are the features extracted from the LiDAR data for MLR. The hand-crafted features include
height, height variations, surface norm, and the normalized difference vegetation index (NDVI).
NDVI shows higher values in the presence of vegetation, and it has been largely utilized for
vegetation detection in several remote sensing applications.42–44 It is defined as follows:

EQ-TARGET;temp:intralink-;e002;116;617NDVI ¼ NIR − VISR

NIRþ VISR
; (2)

where NIR and VISR stand for spectral reflectance measurements in the near-infrared and visible
red regions, respectively. For training MLR parameters ac and βck, we randomly chose 10,000
points per class, and the trained MLR model is later used to predict pixel-wise probability map
for the test images. The probabilistic output is denoted as PMLR. One of the MLR classification
results is shown in Fig. 4(b). The output is fairly noisy, but it recognizes the building structure
accurately due to the additional height information. However, we can also notice that MLR does
not perform well in detecting car pixels. One of the reasons for poor performance is the vertical
resolution of nDSM that is not fine enough to capture the shape of a car.

3.3 Higher-Order Conditional Random Field Formulation

The two probabilistic predictions generated using the optical and LiDAR data, respectively, pro-
vide complementary information to the optimal class labeling. FCN-8s trained on the visible
bands exploits more spectral and spatial information and, therefore, it learns object structure
much better than MLR does. For land covers/objects that lack textures or have indistinguishable
spectral characterization, MLR takes advantage of height information and generates very reliable
and efficient predictions. We combine these two outputs in the higher-order CRF framework
such that the final classification results can have spatial/contextual coherence and in addition
preserve object boundaries. The CRF is an undirected graphical model defined as follows:

EQ-TARGET;temp:intralink-;e003;116;346PðX ¼ xjOÞ ¼ 1

Z

Y
c∈C

ΨcðxcÞ; (3)

where PðX ¼ xjOÞ is the conditional probability distribution of the label X ¼ x given obser-
vations O, Ψc can be modeled as a Gibbs distribution:

EQ-TARGET;temp:intralink-;e004;116;276ΨcðxcÞ ¼ e−ψcðxcÞ; (4)

and ψcðxcÞ is the potential function. C is a set of cliques, over which the potential functions are
used to encode the conditional dependence assumptions. Z ¼ P

X

Q
c∈C e

−ψcðxcÞ is the partition
function that normalizes the probabilistic distribution. Therefore, the final labeling process in
a CRF framework becomes a maximum a posteriori (MAP) estimation, where we find the set of
label x that maximizes the conditional probability distribution: arg maxx PðX ¼ xjOÞ. As the
partition function Z is usually intractable, we define the negative log of the conditional distri-
bution as the energy:

EQ-TARGET;temp:intralink-;e005;116;160EðxÞ ¼ − log PðX ¼ xjOÞ − log Z ¼
X
c∈C

ψcðxcÞ: (5)

Here, ψcðxcÞ is a set of potential functions that can encode a priori knowledge about the
interdependence of the random variables within different cliques. The MAP estimation thereby
is converted into an energy minimization problem: arg minx EðxÞ. We form our proposed
higher-order CRF framework with three different scales.
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3.3.1 Unary potential

The very first scale would be the prior belief of the individual random variable itself:

EQ-TARGET;temp:intralink-;e006;116;704ψuðxÞ ¼
X
i∈v

ψ iðxiÞ; (6)

where x ¼ ½x1; x2; x3; : : : ; xn� represents one realization of the label assignments for n pixels:
v ¼ f1;2; : : : ; ng. xi takes the label from M object classes: xi ∈ LM. This is also known as
the unary potential, which is usually defined as the negative log-likelihood of the per class
probability as shown in the following equation:

EQ-TARGET;temp:intralink-;e007;116;614ψ iðxiÞ ¼ − log PuðxiÞ: (7)

We have obtained two pixel-wise class probability predictions from the FCN-8s and MLR, i.e.,
PFCN and PMLR. We here define PuðxiÞ as

EQ-TARGET;temp:intralink-;e008;116;559Puðxi ¼ mÞ ¼ e−fmðPFCN;PMLR;σmÞP
M
m¼1 e

−fmðPFCN;PMLR;σmÞ ; (8)

where fmðPFCN; PMLR; σmÞ is a linear combination of PFCN and PMLR, and it takes the form

EQ-TARGET;temp:intralink-;e009;116;500fmðPFCN; PMLR; σmÞ ¼ σm0 þ σm1PFCN þ σm2PMLR: (9)

The parameters σm are trained separately on a hold-out training set.

3.3.2 Pairwise potential

The second scale of the CRF encodes the local smoothness assumptions by introducing a penalty
for neighboring pixels that take heterogeneous labels. It is also known as the pairwise potential:

EQ-TARGET;temp:intralink-;e010;116;396ψpðxÞ ¼
X

i∈v;j∈NðiÞ
ψ ijðxi; xjÞ; (10)

where NðiÞ is the four-way connected neighborhood of pixel i. This connection encodes
the shortest range of local context. The most common form for the pairwise potential is
the Potts model, which takes the form:

EQ-TARGET;temp:intralink-;e011;116;316ψ ijðxi; xjÞ ¼ μ · Δðxi ≠ xjÞ; (11)

where Δð·Þ is an indicator function, and μ is the cost that penalizes the heterogeneous labels.
However, using Potts model has two issues: (1) it tends to over-smooth the labeling results; (2) it
applies the same amount of penalties for different combinations of labels (but, in practice,
it should impose less penalty for the very likely combinations of labels and a large penalty
for the most unlikely). To overcome these two issues, we utilize the color contrast sensitivity
cost to take into account the gradient of images so that we can penalize less on the potential
object boundaries. The reformed pairwise potential is expressed as

EQ-TARGET;temp:intralink-;e012;116;200ψ ijðxi; xjÞ ¼ ½θα þ θβ expð−θγkIi − Ijk2Þ� · Tðxi ≠ xjÞ; (12)

where Ii and Ij are the features or observations of pixel xi and xj. kIi − Ijk is the Euclidean
distance in the feature space for the pair of pixels. For multisensor imagery, Ii can include all
physical measurements, e.g., color and height. Tðxi ≠ xjÞ is aM ×M symmetric matrix that has
the diagonal values of zeros and others are the costs for different combinations of class labels.
This model is intended to enforce the label consistency without overly smoothing the object
boundaries. Also, it takes into account the local contextual information to avoid unlikely com-
binations of labels. However, it is still incapable of extracting the fine-contours of certain objects.
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3.3.3 Higher-order potential

The higher-order potential extends the smoothness assumption from the neighboring pixels to
the local regions. The idea is to first group pixels in the images into coherent regions so that each
region ideally belongs to one object. Using an edge awareness segmentation algorithm, this
higher-order potential is particularly useful in preserving the object boundaries. Given a set
of segments denoted as C, we can define our higher-order potential as

EQ-TARGET;temp:intralink-;e013;116;656ψhðxÞ ¼
X
c∈C

ψcðxcÞ: (13)

Segments C are usually generated by an unsupervised segmentation algorithm.13,45 We choose to
take the form of the robust PN Potts’ potential proposed in Ref. 29 for ψcðxcÞ, which has been
proved to be particularly useful. It takes the form of

EQ-TARGET;temp:intralink-;e014;116;578ψcðxcÞ ¼
�
NiðxcÞ 1

Q γmax
c ; if NiðxcÞ < Q

γmax
c ; otherwise

; (14)

where NiðxcÞ denotes the number of pixels taking different labels from the dominant label of the
segment. γmax

c is the maximum cost that will be added. γmax
c can be defined in a way that takes

into account the quality of the segmentation and the contextual information. We define γmax
c in

our case as the following:

EQ-TARGET;temp:intralink-;e015;116;485γmax
c ¼ θcjcj · e

h
−θh

P
i∈c

ðIi−μiÞ2
jcj

i
; (15)

where jcj counts the number of pixels in the segment c. Ii is the features of each pixel in the
segment. μ is the mean observations over the current segment. The exponential term in Eq. (15)
calculates the variance of observations within one segment, which indicates the quality of the
segment. Therefore, the higher-order potential will impose the cost accordingly. For instance, if
the variance is small, the segment very likely captures a coherent region. Therefore, taking differ-
ent labels in those coherent regions can cost more penalties. On the contrary, when the variance is
large, the cost of taking different labels in one segment is small. That is because large variance
usually means that the region might contain multiple objects so that forcing all the pixels in this
segment to take the same label can cause misclassification. Unlike the PN Potts model, which
imposes a strict cost to any heterogeneous labeling within one segment, the robust PN Potts
model proposes a linear truncated cost that is dependent on the number of pixels taking different
labels from the dominant label of the segment. The heterogeneity of the labeling is controlled by
the parameters θc and Q, respectively.

Now let us combine the Eqs. (5), (6), (10), and (13) to formulate our higher-order CRF
energy function as

EQ-TARGET;temp:intralink-;e016;116;262EðxÞ ¼
X
i∈v

ψ iðxiÞ þ
X

i∈v;j∈NðiÞ
ψ ijðxi; xjÞ þ

X
c∈C

ψcðxcÞ; (16)

where ψ iðxiÞ, ψ ijðxi; xjÞ, and ψcðxcÞ take the form in Eqs. (7), (12), and (14), respectively.
Figure 5 shows the configuration of our proposed higher-order CRF. To be noticed, for the global
node of a segment, it can be one of the predefined labels in LM , or if there is no dominant label
for the segment, the segment can take a free label LF, which means that CRF imposes no cost on
heterogeneous labels in this segment. In such a case, it is equivalent to only applying the pair-
wise CRF.

3.4 Learning Conditional Random Field Parameters

The parameters of the proposed higher-order CRF are learned in a stepwise training procedure.
We first learn to combine the two probabilities obtained from the FCN-8s: PFCN and MLR: PMLR

to form the unary potential ψ iðxiÞ. We construct the unary potential using a softmax classifier to
recast the two probabilities into a single probability. The parameters σm can be learned using a
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cross-validation set with a standard maximum likelihood estimation (MLE) procedure. We then
keep σm constant and proceed to train the pairwise CRF parameters: θα, θβ, θγ , and the matrix
Tðxi; xjÞ without the higher-order term using an approximate marginal inference method pro-
posed in Ref. 46. The marginal inference procedure takes into account model mis-specification
and inference approximation. Finally, the higher-order parameters such as θc and Q are learned
by performing cross validation within an empirical range. Moreover, the value of θh is picked
empirically, and we use θh ¼ 2 for all of our experiments. The tuning of parameters θc and Q
will be discussed in Sec. 4.

3.5 Inference Using Graph Cuts

The inference problem in a higher-order CRF is to find the set of class labels that minimizes the
proposed energy function in Eq. (16), i.e., arg minx EðxÞ. In general, this energy optimization
problem is an NP-hard problem. However, there are certain classes of tractable functions that can
be solved in polynomial time, e.g., submodular functions. The energy that we propose happens
to belong to those functions. There are two main methods to approximate such an energy min-
imization problem: message passing algorithms such as belief propagation, and “move making”
algorithms, such as graph cut. In this paper, we choose to use the “move making” graph cut
algorithm due to its computational efficiency.

The “move making” graph cuts inference algorithm (e.g., α-expansion and αβ-swap) has
been successfully used to infer the higher-order CRFs.29,30 We will review the α-expansion
graph cut and then show how to deal with the higher-order CRFs with α-expansion graph
cut by adding auxiliary nodes. We refer readers to papers29–31 for a more detailed description.

The “move making” graph cut algorithm was proposed to efficiently solve the multiclass
classification using s–t min-cut-based graph cut algorithm, which was first introduced for binary
classification problems.47 As shown in Fig. 6(a), the “move making” algorithm usually starts
from an initial set of labels and then iteratively updates the labels to find the solution that
has the lowest energy. To utilize s–t min-cut algorithm, each update in the “move making” algo-
rithm has to be a binary decision. For instance, α-expansion allows any random variable to either
maintain its current label or take the proposed label α. We form a transformation function that
converts the energy from the label space into the “move” space. We then deduce its correspond-
ing move energy. The transformation function Tαð·Þ for the α-expansion as

EQ-TARGET;temp:intralink-;e017;116;161Tαðxi; txiÞ ¼
�

α; txi ¼ 0

xi; txi ¼ 1
: (17)

The energy of a move t is the amount of energy induced by the labeling change during the move,
i.e., EðtÞ ¼ E½Tαðx; tÞ�. Therefore, the task of optimizing the CRF energy EðxÞ is transformed
into the problem of optimizing the move energy, i.e., arg mint E½Tαðx; tÞ�, where EðtÞ is
a pseudoboolean function. This optimization can be achieved in polynomial time by solving

: Latent node: 

: Observations: 

: Higher-order cliques: 

: Higher-order potentials: 

: Pairwise potentials: 

: Unary potentials: 

: Global node: 

Fig. 5 Probabilistic graphical model for the proposed higher-order CRF.
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an s–t min-cut as long as EðtÞ is submodular.47 See Fig. 6(b) for the illustration of s–t min-cut
for α-expansion. For the higher-order CRF, we can first rewrite Eq. (14) into the form of

EQ-TARGET;temp:intralink-;e018;116;437ψcðxcÞ ¼ min

�
min
k∈LM

�
½jcj − nkðxcÞ�

rmax
c

Q
; rmax

c

��
; (18)

where jcj is the number of pixels in the clique c, k is the potential dominant label for the clique c,
and nkðxcÞ is the number of pixels that take the dominant label k in the clique. In other words,
½jcj − nkðxcÞ� is equivalent to NiðxcÞ in Eq. (14), which denotes the number of pixels that do not
take the dominant label in the clique c. We can further generalize Eq. (18) into the following
form:

EQ-TARGET;temp:intralink-;e019;116;332ψcðxcÞ ¼ min

�
min
k∈LM

½ðP − fkðxcÞ�
rmax
c

Q
; γmax

c

�
; (19)

where P and fkðxcÞ are defined as

EQ-TARGET;temp:intralink-;e020;116;275P ¼
X
i∈c

wk
i ; ∀ k ∈ LM; (20)

EQ-TARGET;temp:intralink-;e021;116;233fkðxcÞ ¼
X
i∈c

wk
iΔðxi ¼ kÞ: (21)

There is an additional label, which is introduced to form an extended label set:
LE ¼ LM ∪ fLFg, where LF represents a free label. A segment takes the free label when
there is no dominant variable found in it. Its corresponding move energy can be written as

EQ-TARGET;temp:intralink-;e022;116;160ψcðtcÞ ¼ min

�
θα
X
i∈c

witi; γmax
c

�
: (22)

The move energy functions above can be minimized using the s–t min-cut algorithm shown in
Fig. 6(c).

(a)

(b) (c)

Fig. 6 (a) Flowchart of the move-making graph cut algorithm, (b) S–t min-cut for α-expansion, and
(c) α-expansion for higher-order CRF by adding auxiliary variables.
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3.6 Segmentation for Higher-Order Potential

In the higher-order CRF framework, the quality of the segments impacts the success of the final
labeling. It is critical to choose a robust segmentation algorithm that can yield a dense semantic
labeling with fine boundaries. GSEG algorithm is one such unsupervised multichannel image
segmentation algorithm that utilizes the gradient histogram acquired from the color images to
iteratively cluster pixels from lower gradient to higher gradient. The GSEG algorithm is pri-
marily based on color-edge detection, dynamic region growth, and a unique multiresolution
region merging procedure. The detailed description of the algorithm can be found in Ref. 13.

As GSEG uses the gradient histogram, which helps to preserve the object boundaries. See
one of the illustrations of GSEG segmentation results with different initial seed sizes in Fig. 7.
GSEG is particularly suited for aerial image segmentation because the size of the objects in the
VHR aerial images can vary from a several hundred pixels to tens of thousands. GSEG does not
pose strict constraints of the segment size. Instead, GSEG keeps growing coherent regions until
no local low-gradient pixels can be found. It is, therefore, able to generate segments for objects
different scales. The performance of GSEG is mainly impacted by two parameters, one is the
initial seed size τ, and the other is similarity ratio γ. The former is to determine the initial size of
the low-gradient region, and the latter controls the sensitivity of local feature change.

4 Experiments

In this section, we tested our proposed method on three publicly released multisensor remote
sensing datasets, namely Postdam dataset,48 Vaihingen dataset49 (both of these are from the
ISPRS 2-D semantic labeling contest), and Zeebruges dataset50 from the IGARSS 2015 data
fusion contest. We also conducted several experiments to validate the robustness of our fusion
scheme by integrating our higher-order CRF framework with two different segmentation
algorithms (GSEG and SLIC) and classifiers (MLR and SVM), which are used to generate
the complimentary prediction with LiDAR features.

4.1 Remote Sensing Datasets

Potsdam has a ground sampling distance of 5 cm and includes optical orthophotos with four
spectral channels, IR, R, G, B and the corresponding coregistered normalized DSMs. The entire
collection is divided into 38 image patches, from which 24 images with ground truth labels are
used for training, and the remaining 14 images are employed for testing. The Vaihingen dataset
has a ground sampling distance of 9 cm and consists of 33 images, with 17 images for training
and 16 for testing. The optical images have three spectral channels only: IR, R, and G are accom-
panied by the coregistered DSMs. The imaging data of Zeebruges were acquired using an air-
borne platform flying at the altitude of 300 m over the urban and harbor areas of Zeebruges,
Belgium (51.33 N, 3.20 E). The data were simultaneously collected and georeferenced to
WGS-84. The point density for the LiDAR sensor was ∼65 points∕m2, which translates to
a point spacing of ∼10 cm. The color orthophotos were taken at nadir and had a spatial
resolution of about 5 cm. The dataset is organized into seven separate tiles. Each tile includes
a 10;000 × 10;000 pixel-sized portion of the color orthophoto (GeoTIFF, RGB), and

(a) (b) (c) (d)

Fig. 7 (a) RGB image patch from Potsdam dataset. (b), (c), and (d) Segmentation results of
GSEG algorithm with initial seed size of 15, 100, and 150, respectively.
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a corresponding 5000 × 5000 DSM. Five of the tiles are used for training, and the remaining two
for testing.

In our work, we selected the following five classes: impervious surface, buildings, low veg-
etation, trees, and cars from the Potsdam and Vaihingin given that their ground truth is readily
available. For Zeebruges, we selected two additional categories of interest: boats and water
for the same reasoning. Figure 8 shows one of the training images in Zeebruges along with
its DSM and ground truth. Figure 9 shows the color legend for each class and the corresponding
categories that were identified in each dataset.

4.2 Training the Fully-Convolutional Neural-8s Network

To effectively train and test our proposed algorithm, we selected an image resolution of 224 ×
224 for both ground truth and test images, respectively. The image patches could be cropped
from the dataset in numerous ways. In our experiments, we generated the training set using the
following guidelines: (a) for each class, randomly select nonoverlapping image patches of size
224 × 224 from each image, (b) for each class, randomly select 1000 pixels in each training
image and obtain a 224 × 224 patch with selected pixel as starting point, and (c) randomly
choose 50 cars from the training images to ensure adequate car samples (and also select addi-
tional boats in Zeebruges dataset). The process outlined above yielded a training image set of
43,516, 18,780, and 36,000, using the Potsdam dataset, Vaihingen dataset, and Zeebruges data-
set, respectively.

We initialized the parameters of the FCN-8s network with pretrained weights, which were
obtained using a large dataset of color images and corresponding labels.20 The weights were then
fine-tuned using the corresponding training dataset.

The training process includes two stages. In stage 1, we initialized the weights for convolu-
tional layers 1 through 5, and fully connected layers 6 and 7 with pretrained weights that were
kept constant during the first learning phase. We then train the remaining layers—with the excep-
tion of the connection and score layers—using randomly initialized weights. This training was

(a) (b) (c)

Fig. 8 Example of training image from the Zeebruges dataset. (a) RGB orthophoto, (b) digital
surface model, and (c) ground-truth labels.

Fig. 9 Semantic labeling color legend and the corresponding categories that are classified in each
dataset.
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done with a learning rate of 1 × 10−3 for 35 epochs. The learning rate was decreased by 0.1 after
15 and 30 epochs. In stage 2, we set the parameters using the learned weights from the previous
stage and then fine-tuned all of the layers with a reduced learning rate of 1 × 10−5 for 35 epochs.
Again, the learning rate was decreased by 0.1 after 15 and 30 epochs. A stochastic gradient
descent algorithm was utilized for the fine-tuning using the Caffe [Caffe: Convolutional
Architecture for Fast Feature Embedding] toolbox.51 For the test images, and to avoid blocky
artifacts, we chose tiles with a stride of 112, i.e., with an overlap rate of 50%. The tiles were then
processed by the network for classification.

Our method only requires training one network compared with other competitive deep learn-
ing-based fusion frameworks, such as Refs. 5 and 52. The number of parameters for training one
FCN-8s is 134,279,076 and for two FCN-8s is 268,558,152. The training time for one FCN-8s
network takes 8 h and 15 min for the first 35 epochs and 20 h and 30 min for the second 35
epochs. While for training two FCN-8s, it takes 10 h 49 min for the first 35 epochs and 20 h and
45 min for the second 35 epochs. Training one neural network consumes much less memory as
well as takes less training time.

4.3 Learning the Higher-Order Conditional Random Field Model

The classification results of the higher-order CRF are, in general, affected by the quality of the
segmentation map,5,29 which is employed by the algorithm. To minimize misclassification, we
utilized the GSEG algorithm13 to provide all underlying segmentations due to its optimal per-
formance against the state of the art.53 To this effect, we have generated multiple segmentations
using various parameters to test the robustness of our proposed higher-order CRF algorithm. The
results were compared against the available ground truth that was generated from the training
dataset, where each segment articulates the proper object boundaries.

We found that different segmentations do affect the labeling performance of our higher-order
CRF fusion method. At the initial seed size of 15 pixels, the vehicle F1-score is even lower than
the one without using CRF and fusion of LiDAR (see the comparisons in Table 1, where
HCRF_# means that it uses our proposed higher-order CRF framework, and the segments
are obtained by using GSEG algorithm with initial seed size of #). With an increase in the initial
seed size, the vehicle F1-score improves a noticeable amount, and every other category’s F1-
score keeps increasing and peaks at the initial seed size of 100. Comparing with using the ground
truth segmentation, our proposed method achieves an overall accuracy of 96.05%. This dem-
onstrates that our proposed higher-order CRF can leverage the global knowledge if given

Table 1 Quantitative results of three validation images with different segments. FCN-8s_CIR:
fully-convolutional neural network trained on only IR, R, and G channels; nDSM: multisensor
fusion with normalized DSM; PCRF: pairwise CRF; HCRF_#: higher-order CRF using segments
with initial seed size of #. HCRF_GT: ground truth segmentation, used as our upper-bound
performance.

Method

Average F 1-score per class on three validation images

Avg. F 1-score
(SD)

Overall
Acc. (%)Imp. surf. Building Low veg. Tree Car

FCN-8s_CIR 0.8844 0.9479 0.8650 0.8280 0.9388 0.8928 (0.05) 88.32

nDSM + PCRF 0.8914 0.9530 0.8658 0.8290 0.9354 0.8949 (0.05) 88.61

nDSM + HCRF_15 0.8985 0.9604 0.8712 0.8311 0.9010 0.8924 (0.047) 89.15

nDSM + HCRF_50 0.9012 0.9612 0.8712 0.8315 0.9394 0.9009 (0.046) 89.37

nDSM + HCRF_100 0.9036 0.9634 0.8720 0.8317 0.9424 0.9026 (0.053) 89.43

nDSM + HCRF_150 0.9031 0.9632 0.8719 0.8314 0.9424 0.9023 (0.053) 89.41

nDSM + HCRF_GT 0.9503 0.9822 0.9432 0.9897 0.9683 0.9607 (0.02) 96.05

Note: Bold value indicates the highest overall accuracy achieved using the seed size of 100.
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correctly. Although we acknowledge that ground-truth segmentation map is rarely accessible by
an unsupervised segmentation technique, we would argue that by choosing a suitable segmen-
tation algorithm with its appropriate parameters, applying higher-order CRF tends to improve
the final dense semantic labeling (Fig. 10).

(a) (b) (c)

(d) (e) (f)

Fig. 10 Semantic labeling results of our proposed higher-order CRF method with different seg-
ments. (a) RGB image patch from Potsdam training set, area 4_10, (b) ground-truth labeling,
(c) results of FCN-8s trained on IR, R, and G channels only. (d) and (e) Results of our proposed
higher-order CRF with GSEG algorithm using initial seed size of 15 and 100, respectively.
(f) Classification result of our proposed higher-order CRF with ground-truth segments (upper
bound).

(a)

(b)

(c)

Fig. 11 Results on the Potsdam dataset. Rows I, II, and III illustrate testing patches 3_14, 5_15,
and 7_13, respectively. Column #2 shows the results from FCN8s trained only on IR, R, and
G channels and column #4 provides the results of our proposed method. The corresponding
classification error maps are shown in column #3 and #5, where the red regions indicate the
misclassified pixels.
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4.4 Results of the Potsdam Dataset

We tested our proposed method on the Potsdam dataset and compared its performance quali-
tatively and quantitatively against the most competitive methods that are published on the ISPRS
benchmarking website. The results are shown in Fig. 11, and tabulated in Tables 1 and 3, respec-
tively. SVL_1 serves as the baseline method and does not employ a neural network-based
design.6 UZ_1 utilizes a CNN-based system relying on a downsample-then-upsample architec-
ture to generate dense semantic labeling without any postprocessing. KLab_3 adopts a DCNN
for classifying multisensor remote sensed images. DST_6 employs two separate FCNs for opti-
cal and LiDAR data, respectively, incorporates a pairwise CRF at the end of their FCN frame-
work to gain a 0.6% boost in overall accuracy and omits the downsampling operation that has
been used in most FCNs.5 The qualitative results of our proposed method can be found in Fig. 11
(denoted as DNN_HCRF in Table 3 and RIT_L7 on the benchmarking website). The results tend
to preserve more object boundaries when in comparison with the FCN-8s-based technique (see
Fig. 11 column #2). This fact is also shown in Table 3 across the various classes. Compared with
Ref. 5, our method eliminates the expense of training the second neural network and utilizes the
higher-order CRF framework to improve the overall accuracy by taking advantage of the context
information found in most images. This yields more refined object boundaries (especially for
buildings) as shown in Fig. 11 and confirmed in Tables 1–3 by the quantitative accuracy. Most of
the errors observed in our experiments are the result of inaccuracies in the underlying segmen-
tation maps.

Table 3 Results on 14 test images of the Potsdam dataset. DNN_HCRF: results of using pro-
posed higher-order CRF fusion method. SVL_1, UZ_1, KLab_3, and DST_6 are the published
benchmarking methods on ISPRS Potsdam 2-D labeling contest website.

Method

Average F 1-score per class on 14 test images

Avg. F 1-score (SD) Overall Acc. (%)Imp. surf. Building Low veg. Tree Car

SVL_1 0.835 0.917 0.722 0.632 0.622 0.7456 (0.129) 77.8

UZ_16 0.893 0.954 0.818 0.805 0.865 0.8670 (0.06) 85.8

KLab_354 0.893 0.92 0.835 0.838 0.92 0.8812 (0.042) 86.4

DST_65 0.924 0.964 0.868 0.877 0.934 0.9134 (0.04) 90.2

DNN_HCRF 0.912 0.946 0.851 0.851 0.928 0.8976 (0.044) 88.4

Note: Bold value indicates the highest overall accuracy achieved using the seed size of 100.

Table 2 Experimental comparison of using two different segmentation algorithms: SLIC45 and
GSEG. In addition, we also compared the fusion of FCN-8s and the prediction with LiDAR features
using SVM classifier and MLR.

Method

Average F 1-score per class on three validation
images

Avg. F 1-score
(SD)

Overall
Acc. (%)Imp. surf. Building Low veg. Tree Car

FCN-8s_CIR 0.8844 0.9479 0.8650 0.8280 0.9388 0.8928 (0.05) 88.32

nDSM + HCRF_100 0.9036 0.9634 0.8720 0.8317 0.9424 0.9026 (0.053) 89.43

+ nDSM(SVM) + HCRF_100 0.8945 0.9582 0.8765 0.8320 0.9414 0.9005 (0.051) 89.31

+ nDSM(MLR) + HCRF_SLIC 0.8885 0.9512 0.8653 0.8291 0.9350 0.8938 (0.05) 88.95

+ nDSM(SVM) + HCRF_SLIC 0.8922 0.9532 0.8656 0.8303 0.9364 0.8955 (0.05) 89.01

Note: Bold value indicates the highest overall accuracy achieved using the seed size of 100.
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4.5 Results of the Vaihingen Dataset

The Vaihingen dataset has a slightly lower ground spatial resolution (9 cm) compared with the
Potsdam dataset (5 cm). Furthermore, since Vaihingen dataset does not provide the correspond-
ing normalized DSMs, these were generated by manually filtering the ground points. The quali-
tative and quantitative results—along with the most up to date benchmark comparisons from
the ISPRS website—are shown in Fig. 12 and Table 4, respectively. It should be noted that
our proposed technique performed adequately well as compared with state of the art. Errors
were primarily due to the underlying segmentations and manually generated DSMs that contain
large flat regions with gradually changing elevation. Those regions can be misclassified as build-
ings (e.g., see Fig. 12, row #2, column #5). Note that the Vaihingen dataset contains more flat
areas with gradually changing elevation than in Potsdam dataset. Both the FCN-8s and MLR are
unable, in general, to correctly recognize the gradually elevated regions without an accurate
nDSM.

Fig. 12 Results on the Vaihingen dataset. Column #1 and #4 include four Vaihingen dataset test
patches, namely area_6 (column#1 and row#1), area_12 (column#4 and row#1), area_22
(column#1 and row#2), and area_20 (column#4 and row#2). Column#2 and column#5 are the
labeling results of our proposed method. Column#3 and column#6 are the error maps where
the red regions indicate the misclassified pixels.

Table 4 Results on 17 test images of the Vaihingen dataset. SVL_3, ADL_3, ONE_7, UZ_1,
DLR_10, and UOA are the published benchmarking results on the ISPRS Vaihingen 2-D labeling
contest website. Our proposed method is denoted as DNN_HCRF in the paper or RIT_L7 on
the benchmarking website.

Method

Average F 1-score per class on 17 test images

Avg. F 1-score (SD) Overall Acc. (%)Imp. surf. Building Low veg. Tree Car

SVL_3 0.866 0.91 0.77 0.85 0.556 0.7904 (0.141) 84.8

ADL_339 0.895 0.932 0.823 0.882 0.633 0.8387 (0.119) 88.0

ONE_77 0.91 0.945 0.844 0.899 0.778 0.8752 (0.065) 89.8

UZ_16 0.892 0.925 0.816 0.869 0.573 0.8150 (0.141) 87.3

DLR_1052 0.923 0.941 0.841 0.90 0.793 0.8796 (0.061) 90.3

UOA55 0.898 0.921 0.804 0.882 0.82 0.8650 (0.051) 87.6

DNN_HCRF 0.901 0.932 0.814 0.872 0.72 0.8478 (0.084) 87.8

Note: Bold value indicates the highest overall accuracy achieved using the seed size of 100.
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4.6 Results of the Zeebruges Dataset

The Zeebruges dataset was first introduced in the 2015 IEEE GRSS data fusion contest. The
most competitive experimental results of this contest have been published in Ref. 10. The best
numerical result reported in Ref. 10 is achieved by completely retraining a CNN end-to-end
using R, G, B, and height data. Several non-CNN-based techniques are listed as the baseline
methods. As shown in Table 5, the results using a pretrained FCN-8s outperform the best results
reported in the 2015 contest. Our proposed method further improves the overall accuracy by
a large margin (2.35%) compared with only applying FCN-8s. Figure 13 shows the visual
improvements in object boundaries by using our proposed higher-order CRF. This is attributed
to the high-resolution (ground resolution of 5 cm) RGB images and the extremely high density of
LiDAR data. VHR aerial imagery in the Zeebruges results in a high quality of segmentation,
which subsequently boosts the performance of our proposed higher-order CRF framework.

5 Discussion

In this section, we will discuss how we fine-tune the pretrained neural networks, the learning of
hyper parameters of the higher-order CRF, and the advantages of the higher-order CRF
framework.

Table 5 Results on the Zeebruges dataset. HSVDGr/SVM, blesaux, and RGBdþ trained AlexNet
are the most recent benchmarking results presented in the review paper.10 FCN-8s only uses
FCN-8s without CRFs. DNN_HCRF is the proposed method.

Method Overall accuracy (%) Cohen Kappa

HSVDGr/SVM10 73.60 0.65

blesaux 76.56 —

RGBdþ trained AlexNet10 83.32 0.78

FCN-8s only 85.50 0.81

DNN_HCRF 87.85 0.84

Note: Bold value indicates the highest overall accuracy achieved using the seed size of 100.

Original RGB image

Zoomed regions FCN-8s labeling results Labeling results of proposed method

Fig. 13 Qualitative results on the Zeebruges dataset. The illustration demonstrates that our pro-
posed higher-order CRF can produce more accurate object boundaries compared with FCN-8s as
seen from the zoomed images.
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5.1 Fine-Tuning of the Pretrained Neural Network

In addition to the training procedure introduced in Sec. 4.2, we also trained the FCN-8s neural
network using a one-stage (namely DNN_T1) instead of a two-stage training strategy (namely
DNN_T2). To this effect, we initialized the parameters of convolutional layers 1 to 5 and fully
connected layer 6 and 7 with pretrained weights in Ref. 20 and assigned random weights for the
remaining layers. The parameters of convolutional layers 1 to 5 were held constant during the
training, and the parameters of the other layers were fine-tuned with a learning rate at 1 × 10−3,
35 epochs, multiplying learning rate at 15 and 30, up by 0.1. We evaluated these two training
strategies on the Potsdam testing dataset and found that the two-stage training strategy outper-
formed the one-stage training strategy regarding overall classification accuracy by 2.3% as
shown in Table 6.

As our experiments showed, different training strategies for learning fully convolutional neu-
ral networks parameters have a significant impact on the overall accuracy of semantic labeling.
We think that the second step of fine-tuning all the layers in the two-stage training strategy is
attributed to the performance improvement. Because the pretrained neural networks are usually
trained based on general viewing perspective of objects, the shallow convolutional layers also
need to be fine-tuned to adapt to the different appearance of aerial images. We found that chang-
ing the fine-tuning strategy significantly impacts the classification results.

5.2 Parameter Learning of the Higher-Order Term

Based on Eq. (18), to achieve the optimal performance of the higher-order CRF, we need to train
the hyper-parameter 1

Q.
1
Q can be interpreted as a truncation term that determines the percentages

of the number of pixels in one segment are allowed to take a different label from the dominant
label for the segment. We refer the readers to this paper14 for more details on the hyperparameters
training process.

5.3 Higher-Order CRF Modeling

We have discussed the quantitative improvements of using the higher-order CRFs compared to
only using the pairwise CRFs in the previously published paper.14 We have seen the same quan-
titative and qualitative improvements for the Vaihingen and Zeebruges dataset. Especially for the
Zeebruges dataset, as it has the even higher spatial resolution RGB images, the higher-order CRF
gains more advantages in terms of resolving the object boundaries (see Fig. 13).

The need for a higher-order CRF is discussed in Ref. 39, in which the authors argued that
a higher-order CRF sometimes had an adverse impact on classification accuracy. We agree on the
point that the performance of higher-order CRFs is sensitive to the quality of segments, which is
scene dependent. As shown in Table 1, the vehicle F1-score drops when higher order CRF takes
a small initial seed size, which resulted in over-segmented objects. Based on our experiments, as
long as we choose a proper segmentation algorithm and find its appropriate parameters, using
higher-order CRF gains an overall quantitative and qualitative improvement for dense semantic
labeling compared with only using pairwise CRF. Furthermore, incorporating a higher-order

Table 6 Classification results using only FCN8s with two different training strategies. The one-
stage training method is denoted as DNN_T1, and the two-stage training method is denoted as
DNN_T2.

Method

Average F 1-score per class on 14 test images

Avg. F 1-score (SD) Overall Acc. (%)Imp. surf. Building Low veg. Tree Car

DNN_T1 0.887 0.915 0.822 0.822 0.908 0.8708 (0.044) 85.5

DNN_T2 0.907 0.939 0.848 0.851 0.924 0.8938 (0.042) 87.8

Note: The two-stage training method achieves better overall accuracy and is labeled as bold.
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CRF provides potential opportunities for further improvement by utilizing object-level contex-
tual information in a hierarchical random field, as proposed in Refs. 30–32.

The main contribution of our paper is mainly focusing on the qualitative and quantitative
improvements by introducing the higher-order CRFs after we obtained the probabilistic results
from the state-of-the-art CNNs. The individual results from each CNN architecture may differ.
As we treated these two parts (CNNs and CRFs) separately, we expect improvements even if we
use other CNN architectures. Higher-order CRFs leverage the boundary and context information
that is not necessarily learned by CNNs. The performance of our approach combining with other
CNN architectures needs more investigation, but one would expect incremental improvement in
accuracy by carefully comparing and selecting other deep learning architectures.

6 Conclusion

We proposed a decision-level multimodal classification method for dense semantic labeling of
VHR aerial optical imagery and its coregistered LiDAR data. An FCN network and MLR were
utilized for generating the initial predictions for the optical imagery and LiDAR data, respec-
tively. We proposed a higher-order CRF fusion method to combine the predictions from each
sensor and to simultaneously reason about long-term relations between objects in the scene.
We demonstrated and analyzed the performance of the proposed method with experiments
using remote sensing benchmark data, the Potsdam, and Vaihingen datasets. The performance
of our proposed higher-order CRF model is affected by three main factors: (1) the accuracy of
the initial probabilistic predictions, (2) the quality of the low-level segmentation, and (3) the
hyperparameters of the training algorithm.

Acknowledgments

The authors would like to acknowledge the Department of Defense for its support of this
research as well as the usage of the dataset provided by ISPRS and BSF Swissphoto, released
in conjunction with the ISPRS, led by ISPRS WG II/4. The authors also would like to thank
the Belgian Royal Military Academy for acquiring and providing the data used in this study, and
the IEEE GRSS Image Analysis and Data Fusion Technical Committee.

References

1. M. Xu, H. Chen, and P. K. Varshney, “An image fusion approach based on Markov random
fields,” IEEE Trans. Geosci. Remote Sens. 49(12), 5116–5127 (2011).

2. A. H. S. Solberg, T. Taxt, and A. K. Jain, “A Markov random field model for classification
of multisource satellite imagery,” IEEE Trans. Geosci. Remote Sens. 34(1), 100–113
(1996).

3. G. Moser, S. B. Serpico, and J. A. Benediktsson, “Land-cover mapping by Markov model-
ing of spatial–contextual information in very-high-resolution remote sensing images,”
Proc. IEEE 101(3), 631–651 (2013).

4. L. Cianci, G. Moser, and S. Serpico, “Change detection from very highresolution multisen-
sor remote-sensing images by a Markovian approach,” in Proc. IEEE-GOLD (2012).

5. J. Sherrah, “Fully convolutional networks for dense semantic labelling of high-resolution
aerial imagery,” arXiv:1606.02585 (2016).

6. M. Volpi and D. Tuia, “Dense semantic labeling of subdecimeter resolution images with
convolutional neural networks,” IEEE Trans. Geosci. Remote Sens. 55(2), 881–893 (2017).

7. N. Audebert, B. L. Saux, and S. Lefèvre, “Semantic segmentation of earth observation data
using multimodal and multi-scale deep networks,” in Asia Conf. on Computer Vision,
pp. 180–196, Springer, Cham (2016).

8. D. Marmanis et al., “Deep learning earth observation classification using imagenet pre-
trained networks,” IEEE Geosci. Remote Sens. Lett. 13(1), 105–109 (2016).

9. E. Maggiori et al., “High-resolution semantic labeling with convolutional neural networks,”
arXiv:1611.01962 (2016).

Liu et al.: Semantic segmentation of multisensor remote sensing imagery with deep ConvNets. . .

Journal of Applied Remote Sensing 016501-20 Jan–Mar 2019 • Vol. 13(1)

https://doi.org/10.1109/TGRS.2011.2158607
https://doi.org/10.1109/36.481897
https://doi.org/10.1109/JPROC.2012.2211551
https://doi.org/10.1109/TGRS.2016.2616585
https://doi.org/10.1109/LGRS.2015.2499239


10. M. Campos-Taberner et al., “Processing of extremely high-resolution Lidar and RGB data:
outcome of the 2015 IEEE GRSS data fusion contest–part a: 2-D contest,” IEEE J. Sel.
Topics Appl. Earth Obs. Remote Sens. 9(12), 5547–5559 (2016).

11. X. Chen et al., “Vehicle detection in satellite images by hybrid deep convolutional neural
networks,” IEEE Geosci. Remote Sens. Lett. 11(10), 1797–1801 (2014).

12. M. Castelluccio et al., “Land use classification in remote sensing images by convolutional
neural networks,” arXiv:1508.00092 (2015).

13. L. Ugarriza et al., “Automatic image segmentation by dynamic region growth and multi-
resolution merging,” IEEE Trans. Image Process. 18(10), 2275–2288 (2009).

14. Y. Liu et al., “Dense semantic labeling of very-high-resolution aerial imagery and lidar with
fully-convolutional neural networks and higher-order CRFs,” in IEEE Conf. Computer
Vision and Pattern Recognition Workshops (CVPRW) (2017).

15. L. Gómez-Chova et al., “Multimodal classification of remote sensing images: a review and
future directions,” Proc. IEEE 103(9), 1560–1584 (2015).

16. C. Debes et al., “Hyperspectral and LiDAR data fusion: outcome of the 2013 GRSS data
fusion contest,” IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(6), 2405–2418 (2014).

17. O. Penatti, K. Nogueira, and J. A. dos Santos, “Do deep features generalize from everyday
objects to remote sensing and aerial scenes domains?” in IEEE Conf. Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 44–51 (2015).

18. M. Alonzo, B. Bookhagen, and D. A. Roberts, “Urban tree species mapping using hyper-
spectral and LiDAR data fusion,” Remote Sens. Environ. 148, 70–83 (2014).

19. V. Mnih and G. Hinton, “Learning to detect roads in high-resolution aerial images,” Lect.
Notes Comput. Sci. 6316, 210–223 (2010).

20. J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmen-
tation,” in IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440
(2015).

21. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: a deep convolutional encoder-
decoder architecture for image segmentation,” arXiv:1511.00561 (2015).

22. L.-C. Chen et al., “Semantic image segmentation with deep convolutional nets and fully
connected CRFs,” arXiv:1412.7062 (2014).

23. A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature extraction for remote
sensing image classification,” IEEE Trans. Geosci. Remote Sens. 54(3), 1349–1362 (2016).

24. B. Waske and J. A. Benediktsson, “Fusion of support vector machines for classification of
multisensor data,” IEEE Trans. Geosci. Remote Sens. 45(12), 3858–3866 (2007).

25. J. D. Wegner, J. A. Montoya-Zegarra, and K. Schindler, “A higher-order CRF model for
road network extraction,” in IEEE Conf. Computer Vision and Pattern Recognition (CVPR),
pp. 1698–1705 (2013).

26. E. Li et al., “Robust rooftop extraction from visible band images using higher order CRF,”
IEEE Trans. Geosci. Remote Sens. 53(8), 4483–4495 (2015).

27. S. Kluckner et al., “Semantic classification in aerial imagery by integrating appearance and
height information,” Lect. Notes Comput. Sci. 5995, 477–488 (2010).

28. D. Marmanis et al., “Semantic segmentation of aerial images with an ensemble of CNSS,”
ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. III-3, 473–480 (2016).

29. P. Kohli and P. H. Torr, “Robust higher order potentials for enforcing label consistency,”
Int. J. Comput. Vision 82(3), 302–324 (2009).

30. L. Ladick? et al., “Associative hierarchical random fields,” IEEE Trans. Pattern Anal. Mach.
Intell. 36(6), 1056–1077 (2014).

31. X. Boix et al., “Harmony potentials,” Int. J. Comput. Vision 96(1), 83–102 (2012).
32. L. Ladicky et al., “Graph cut based inference with co-occurrence statistics,” Lect. Notes

Comput. Sci. 6315, 239–253 (2010).
33. K. Philipp and V. Koltun, “Efficient inference in fully connected CRFs with Gaussian edge

potentials,” in Adv. Neural Inf. Process. Syst. 2(3), 109–117 (2011).
34. J. Marcello, A. Medina, and F. Eugenio, “Evaluation of spatial and spectral effectiveness of

pixel-level fusion techniques,” IEEE Geosci. Remote Sens. Lett. 10(3), 432–436 (2013).
35. W. Li, S. Prasad, and J. Fowler, “Decision fusion in kernel-induced spaces for hyperspectral

image classification,” IEEE Geosci. Remote Sens. Lett. 52(6), 3399–3411 (2014).

Liu et al.: Semantic segmentation of multisensor remote sensing imagery with deep ConvNets. . .

Journal of Applied Remote Sensing 016501-21 Jan–Mar 2019 • Vol. 13(1)

https://doi.org/10.1109/JSTARS.2016.2569162
https://doi.org/10.1109/JSTARS.2016.2569162
https://doi.org/10.1109/LGRS.2014.2309695
https://doi.org/10.1109/TIP.2009.2025555
https://doi.org/10.1109/CVPRW.2017.200
https://doi.org/10.1109/CVPRW.2017.200
https://doi.org/10.1109/JPROC.2015.2449668
https://doi.org/10.1109/JSTARS.2014.2305441
https://doi.org/10.1109/CVPRW.2015.7301382
https://doi.org/10.1109/CVPRW.2015.7301382
https://doi.org/10.1016/j.rse.2014.03.018
https://doi.org/10.1007/978-3-642-15567-3
https://doi.org/10.1007/978-3-642-15567-3
https://doi.org/10.1109/TGRS.2015.2478379
https://doi.org/10.1109/TGRS.2007.898446
https://doi.org/10.1109/CVPR.2013.222
https://doi.org/10.1109/TGRS.2015.2400462
https://doi.org/10.1007/978-3-642-12304-7
https://doi.org/10.5194/isprsannals-III-3-473-2016
https://doi.org/10.1007/s11263-008-0202-0
https://doi.org/10.1109/TPAMI.2013.165
https://doi.org/10.1109/TPAMI.2013.165
https://doi.org/10.1007/s11263-011-0449-8
https://doi.org/10.1007/978-3-642-15555-0
https://doi.org/10.1007/978-3-642-15555-0
https://doi.org/10.1109/LGRS.2012.2207944
https://doi.org/10.1109/TGRS.2013.2272760


36. C. Pohl and J. L. Van Genderen, “Review article multisensor image fusion in remote
sensing: concepts, methods and applications,” Int. J. Remote Sens. 19(5), 823–854 (1998).

37. J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, “Neural network approaches versus stat-
istical methods in classification of multisource remote sensing data,” IEEE Trans. Geosci.
Remote Sens. 28(4), 540–552 (1990).

38. N. Audebert, B. Le Saux, and S. Lefèvre, “Beyond RGB: very high resolution urban remote
sensing with multimodal deep networks,” ISPRS J. Photogramm. Remote Sens. 140, 20–32
(2017).

39. S. Paisitkriangkrai et al., “Effective semantic pixel labelling with convolutional networks
and conditional random fields,” in IEEE Conf. Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 36–43 (2015).

40. H. Khurshid and M. F. Khan, “Segmentation and classification using logistic regression in
remote sensing imagery,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(1), 224–232
(2015).

41. J. Platt, “Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods,” Adv. Large Margin Classifiers 10(3), 61–74 (1999).

42. S. S. Panda, D. P. Ames, and S. Panigrahi, “Application of vegetation indices for agricultural
crop yield prediction using neural network techniques,” Remote Sens. 2(3), 673–696 (2010).

43. N. Pettorelli et al., “Using the satellite-derived NDVI to assess ecological responses to
environmental change,” Trends Ecol. Evol. 20(9), 503–510 (2005).

44. H. Nouri et al., “High spatial resolution worldview-2 imagery for mapping NDVI and its
relationship to temporal urban landscape evapotranspiration factors,” Remote Sens. 6(1),
580–602 (2014).

45. R. Achanta et al., “Slic superpixels compared to state-of-the-art superpixel methods,” IEEE
Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012).

46. J. Domke, “Learning graphical model parameters with approximate marginal inference,”
IEEE Trans. Pattern Anal. Mach. Intell. 35(10), 2454–2467 (2013).

47. V. Kolmogorov and R. Zabin, “What energy functions can be minimized via graph cuts?”
IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004).

48. “ISPRS 2D semantic labeling contest—Potsdam,” http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-potsdam.html (12 May 2017).

49. “ISPRS 2D semantic labeling contest—Vaihingen,” http://www2.isprs.org/commissions/
comm3/wg4/2d-sem-label-vaihingen.html (12 May 2017).

50. “IEEE GRSS data fusion contest,” http://www.grss-ieee.org/community/technical-
committees/data-fusion (18 September 2017).

51. Y. Jia et al., “Caffe: convolutional architecture for fast feature embedding,” in Proc. of the
22nd ACM Int. Conf. on Multimedia, pp. 675–678, ACM (2014).

52. D. Marmanis et al., “Classification with an edge: improving semantic image segmentation
with boundary detection,” ISPRS J. Photogramm. Remote Sens. 135, 158–172 (2018).

53. S. R. Vantaram and E. Saber, “Survey of contemporary trends in color image segmentation,”
J. Electron. Imaging 21(4), 040901 (2012).

54. R. Kemker and C. Kanan, “Deep neural networks for semantic segmentation of multispec-
tral remote sensing imagery,” CoRR Vol. abs/1703.06452 (2017).

55. G. Lin et al., “Efficient piecewise training of deep structured models for semantic segmenta-
tion,” in IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3194–3203 (2016).

Yansong Liu received his BS degree in electrical and communication department from
Shanghai Jiao Tong University, Shanghai, China, in 2008 and his MS degree in electrical
and electronics department from Rochester Institute of Technology in 2013. Currently, he is
a PhD candidate in the Chester F. Carlson center of imaging science department at Rochester
Institute of Technology. His research interests are in the area of digital image/video processing
and machine learning, including image segmentation and classification, object recognition, and
probabilistic graphic models.

Sankaranarayanan Piramanayagam is currently pursuing his PhD in imaging science at
Rochester Institute of Technology (RIT). His thesis is focused on image and video segmentation,

Liu et al.: Semantic segmentation of multisensor remote sensing imagery with deep ConvNets. . .

Journal of Applied Remote Sensing 016501-22 Jan–Mar 2019 • Vol. 13(1)

https://doi.org/10.1080/014311698215748
https://doi.org/10.1109/TGRS.1990.572944
https://doi.org/10.1109/TGRS.1990.572944
https://doi.org/10.1016/j.isprsjprs.2017.11.011
https://doi.org/10.1109/CVPRW.2015.7301381
https://doi.org/10.1109/CVPRW.2015.7301381
https://doi.org/10.1109/JSTARS.2014.2362769
https://doi.org/10.3390/rs2030673
https://doi.org/10.1016/j.tree.2005.05.011
https://doi.org/10.3390/rs6010580
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2012.120
https://doi.org/10.1109/TPAMI.2013.31
https://doi.org/10.1109/TPAMI.2004.1262177
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion
http://www.grss-ieee.org/community/technical-committees/data-fusion
https://doi.org/10.1117/1.JEI.21.4.040901
https://doi.org/10.1109/CVPR.2016.348


and aerial image classification and his research interests include computer vision, HDR, and
machine learning. He received his Bachelor of Engineering in electronics and instrumentation
at Easwari Engineering College from the Anna University, India, and his MS degree in electrical
and microelectronic engineering from RIT.

Sildomar T. Monteiroa served as a guest editor of the Journal of Field Robotics special issue on
alternative sensing techniques for robot perception in 2015 and organized a workshop on the
same topic at the Robotics Science and Systems Conference in 2012. He served as a program
cochair of the Australasian Conference on Robotics and Automation in 2009. He was a recipient
of the prestigious Japan Society for the Promotion of Science Postdoctoral Fellowship in 2007.
He serves as vice-chair of the IEEE Geoscience and Remote Sensing Society’s Western
New York Chapter since 2016. He is a member of the IEEE and ACM.

Eli Saber is a professor in the electrical and microelectronic engineering department and
the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology.
He received his BS degree in electrical and computer engineering from the University of
Buffalo in 1988 and his MS and PhD degrees in the same discipline from the University of
Rochester in 1992 and 1996, respectively. From 1997 until 2004, he was an adjunct faculty
member at the electrical engineering department of the Rochester Institute of Technology
and at the Electrical & Computer Engineering Department of the University of Rochester,
responsible for teaching undergraduate and graduate coursework in signal, image, and video
processing, pattern recognition and communications, and performing research in multimedia
applications, pattern recognition, image understanding, and color engineering.

Liu et al.: Semantic segmentation of multisensor remote sensing imagery with deep ConvNets. . .

Journal of Applied Remote Sensing 016501-23 Jan–Mar 2019 • Vol. 13(1)


