
Nonlocal weighted sparse unmixing based on
global search and parallel optimization

Yongxin Li ,a,b Wenxing Bao ,a,b,* Kewen Qu,a,b and Xiangfei Shen a,b

aNorth Minzu University, School of Computer Science and Engineering, Yinchuan, China
bNorth Minzu University, The Key Laboratory of Images and Graphics Intelligent Processing of

State Ethnic Affairs Commission, Yinchuan, China

Abstract. Sparse unmixing (SU) can represent an observed image using pure spectral signa-
tures and corresponding fractional abundance from a large spectral library and is an important
technique in hyperspectral unmixing. However, the existing SU algorithms mainly exploit spatial
information from a fixed neighborhood system, which is not sufficient. To solve this problem, we
propose a nonlocal weighted SU algorithm based on global search (G-NLWSU). By exploring
the nonlocal similarity of the hyperspectral image, the weights of pixels are calculated to form a
matrix to weight the abundance matrix. Specifically, G-NLWSU first searches for a similar group
of each pixel in the global scope then uses singular value decomposition to denoise and finally
obtains the weight matrix by considering correlations between similar pixels. To reduce the exe-
cution burden of G-NLWSU, we propose a parallel computing version of G-NLWSU, named
PG-NLWSU, which integrates compute unified device architecture-based parallel computing
into G-NLWSU to accelerate the search for groups of nonlocally similar pixels. Our proposed
algorithms shed new light on SU by considering a new exploitation process of spatial informa-
tion and parallel computing scenario. Experimental results conducted on simulated and real data-
sets show that PG-NLWSU is superior to comparison algorithms. © The Authors. Published by SPIE
under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1
.JRS.15.016501]
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1 Introduction

The rapid development of hyperspectral remote sensing technology has resulted in its wide use,
such as in geological prospecting, target detection, and environmental surveillance.1 However,
owing to the low spatial resolution of the sensor, the spatial complexity will lead to the existence
of mixed pixels in a hyperspectral image (HSI), i.e., different substances form a pixel.2 Linear
spectral unmixing, also known as a linear mixing model (LMM), is a standard method to solve
the problem of mixed pixels, which assumes that the observed spectral signal can be expressed
linearly through a set of pure spectral signatures and their corresponding abundance weights.3

LMMs can be categorized as either unsupervised- or semisupervised-based unmixing algo-
rithms. Unsupervised-based unmixing methods require endmember extraction and abundance
estimation steps,4,5 which can be classified as geometric-,6–18 statistic-,19–24 or spatial-information-
based.25–29 Geometric-based algorithms usually assume that desired pure pixels exist in an image,
but they usually fail if the image mixing degree is high. Statistic-based algorithms can elegantly
solve problems of a high mixing degree, but they only consider spectral information and ignore
correlations between pixels. Spatial-information-based algorithms fuse spatial and spectral infor-
mation for endmember extraction and have attracted huge attention.

Compared with the unsupervised methods, semisupervised-based unmixing algorithms, also
known as sparse unmixing (SU) algorithms, solve the spectral unmixing problem by introducing
a large public spectral library. It assumes that the observed spectral signal can be represented by a
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linear combination of a few spectral signatures in the spectral library. Therefore, the SU problem
is equivalent to searching for an optimal subset from the spectral library to simulate mixed pixels
in the scene.30 However, the number of spectra in the library is much larger than the number of
endmembers, implying that an abundance matrix usually has only a few nonzero entries, i.e., it is
sparse. Bioucas-Dias and Figueiredo31 proposed a variable splitting and augmented Lagrangian-
based sparse unmixing algorithm (SUnSAL), which uses an alternating direction multiplier
method (ADMM) to optimize this constrained sparse regression problem. To enhance the spar-
sity of a solution, Iordache et al.32 proposed a new SUnSAL extension by considering collabo-
rative sparsity, i.e., the l2;1 norm, to simultaneously boost row sparseness of the abundance. Sun
et al.33 proposed an lpð0 < p < 1Þ norm to be used as a new sparsity regularizer. Cheng et al.34

introduced weighted l1 norm minimization to penalize nonzero sparse terms in sparse solutions.
HSI not only contains a large amount of spectral information but also has rich spatial

information. Iordache et al.35 proposed an SU algorithm with variable splitting augmentation
Lagrangian and total variation (SUnSAL-TV), where the total variation (TV) regularizer
explores spatial neighborhood information. When the TV regularizer is only used, it is called
nonnegative least squares TV (NCLS-TV). Zhang et al.36 proposed a local collaborative SU that
combines neighborhood weights with cooperative sparse regression to achieve better unmixing
results than SUnSAL-TV. Based on the weighted l1 strategy, Wang et al.37,38 proposed a double
weighted SU algorithm to enhance the sparsity of abundances from the spectral and spatial
domains, and a variant with TV regularization. Wang et al.39 introduced graph regularization
to improve unmixing performance. Zhang et al.40 proposed a spectraspatial weighted SU model
using the neighborhood information of the image in a weight matrix. Zhong et al.41 proposed a
nonlocal TV regularizer for sparse unmixing (NLSU). Feng et al.42 improved NLSU and
extracted fixed spatial information from the original image.

However, the unmixing algorithm that combines spatial information still has two problems:
(1) the global spatial information is not considered. Local and nonlocal-based methods find sim-
ilar pixels from the neighborhood and large local blocks, respectively; (2) the spatial regulari-
zation term makes the model more complicated. In this paper, we propose a nonlocal weighted
SU model, PG-NLWSU, based on global search and parallel acceleration. Inspired by a nonlocal
mean algorithm, PG-NLWSU first searches similar blocks of all pixels from the whole image and
uses singular value decomposition (SVD) to denoise them. The explored nonlocal information is
used to weight an abundance matrix with the l1-norm to generate a solution with stronger spar-
sity. To search similar blocks is generally time consuming. PG-NLWSU uses parallel computing
to enhance its performance. We make three primary contributions:

1. We propose a global search strategy to exploit nonlocal similar blocks from whole images.
2. The exploited nonlocal information is used as a weight matrix to penalize the abundance

matrix with the l1 norm.
3. Parallel computing is applied to spatial information extraction to improve the algorithm’s

efficiency.

Several experiments conducted on synthetic and real hyperspectral datasets indicate that
PG-NLWSU significantly improves upon current SU algorithms.

The rest of this article is organized as follows. Section 2 describes SU theory. Section 3
discusses the PG-NLWSU algorithm. Section 4 details experiments on simulated and real data-
sets. Section 5 discusses the advantages and disadvantages of the algorithm and relates directions
of future research.

2 Sparse Unmixing

2.1 LMM

The LMM assumes that the mixed pixels in an HSI can be expressed as a linear combination
of the endmember spectrum and their corresponding abundances, given as

EQ-TARGET;temp:intralink-;e001;116;87y ¼ Mαþ n; (1)
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where y ∈ RL×1, M ∈ RL×q, α ∈ Rq×1, and n ∈ RL×1 denote the observed mixed pixel spec-
trum, endmember spectral vectors, abundance vector, and error term, respectively. α generally
has two constraints: abundance non-negative constraint (ANC), i.e., α ≥ 0, and the abundance
sum-to-one constraint (ASC), i.e., 1Tα ¼ 1.

2.2 Sparse Unmixing

SU introduces a large spectral library to the LMM, given by

EQ-TARGET;temp:intralink-;e002;116;637Y ¼ AXþ N; (2)

where Y ∈ RL×p is an HSI with L spectral bands and P pixels, A ∈ RL×M is a spectral library
with M endmembers, X ∈ RM×p is the fractional abundance matrix corresponding to all end-
members in the spectral library, and N ∈ RL×M is the error that affects each pixel. Since an HSI
is usually composed of only a small number of endmember spectral, the fractional abundance
matrix X is sparse, which can minimize an SU model and regularize the abundance matrix X
with a sparsity regularizer

EQ-TARGET;temp:intralink-;e003;116;533min
X

1

2
kAX − Yk2F þ λkXk0 s:t: X ≥ 0; (3)

where k · kF is the F norm that represents the error between the measured value and real data,
k · k0 is an l0 norm sparsity constraint, and λ is a regularization parameter. It is worth noting that
owing to the existence of spectral variability in hyperspectral data, only the ANC is normally
considered, and the ASC is not considered. In addition, because Eq. (3) is nonconvex, which is
hard to solve, the l1 norm sparsity constraint

EQ-TARGET;temp:intralink-;e004;116;431min
X

1

2
kAX − Yk2F þ λkXk1 s:t: X ≥ 0; (4)

is taken into account.
To improve the sparsity of the l1 norm, a weighted l1 norm is proposed:43

EQ-TARGET;temp:intralink-;e005;116;365min
X

1

2
kAX − Yk2F þ λkW ⊙ Xk1 s:t: X ≥ 0; (5)

where ⊙ represents the point multiplication operation, W ∈ RM×p is obtained as

EQ-TARGET;temp:intralink-;e006;116;311Wkþ1
ij ¼ 1

jXk
ijj þ ε

; (6)

where ε is an extremely small constant and Xt
ij is the value of the ði; jÞ’th element of the

abundance matrix X in the t’th iteration.

3 Nonlocal Weighted Sparse Unmixing Method Based on
Global Search

3.1 Nonlocal Similarity Block Based on Global Search

Nonlocal information, as important spatial information, is widely used in HSI classification,44,45

denoising,46 and unmixing.47 However, nonlocal-based methods tend to use a local search box
strategy to extract nonlocal similar pixels,44–47 which requires a large number of local search
boxes. Although this search strategy improves execution efficiency, it fails to find many similar
pixels that may be far from a fixed search area. We use a global search strategy to extract similar
pixels, which can exploit spatial information well. In particular, abundance images and HSIs
have similar spatial characteristics.48 As shown in Fig. 1, the following operations are performed
on the abundance image:
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1. X, for the 8-neighborhood block Sx centered on x, j neighborhood blocks S1 ∼ Sj with
the highest similarity were searched in the whole image, with similarity discrimination
method

EQ-TARGET;temp:intralink-;e007;116;273distðx; yÞ ¼ ðSx − SyÞ ⊗ g; (7)

where Sx and Sy represent the neighborhood block centered on x and y, respectively,
g is a Gaussian kernel function, and ⊗ denotes the convolution operation.

2. Extract the center pixels of j similar blocks and reorganize them into a similar pixels
group Px ¼ ½s1 ∼ sj�T and then perform a low-rank noise reduction on Px to remove
noises

EQ-TARGET;temp:intralink-;e008;116;181Px ¼ svdðPxÞ; (8)

where svdð·Þ is the SVD function, and the following operations are performed:

EQ-TARGET;temp:intralink-;e009;116;138½U;Σ;VT � ¼ svdðPxÞ; (9)

where U denotes a left singular vector matrix, Σ represents the diagonal matrix, where its
the diagonal elements are the singular values in descending order, and V denotes a right
singular vector matrix. The largest k singular values in Σ and their corresponding left and
right singular vectors are selected for reconstruction of Px.

Fig. 1 Flowchart of G-NLWSU.
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3. Perform a weighted summation on Px to obtain the nonlocal similarity value NLSðxÞ
corresponding to x

EQ-TARGET;temp:intralink-;e010;116;711WðiÞ ¼ jx − sij2∕h; (10)

where the si are the center pixels of the i’th similar blocks of the pixel x, and h is a
smoothing parameter:

EQ-TARGET;temp:intralink-;e011;116;656NLSðxÞ ¼
Xj

i¼1

WðiÞ × Pxði; ∶Þ; (11)

where Pxði; ∶Þ is the i’th similar pixel of x, WðiÞ is the weight corresponding to the i’th
similar pixel.

4. Perform the above three steps for all pixels to get the final nonlocal similarity
matrix NLSðXÞ.

3.2 Nonlocal Weighted Sparse Unmixing Method

The proposed nonlocal weighted algorithm, G-NLWSU, is described mathematically as

EQ-TARGET;temp:intralink-;e012;116;501min
X

1

2
kAX − Yk2F þ λkWNLS ⊙ Xk1 s:t: X ≥ 0; (12)

with weighting matrix

EQ-TARGET;temp:intralink-;e013;116;447WNLS ¼ 1

jNLSðXk
ijÞj þ ε

; (13)

Algorithm 1 Pseudocode of G-NLWSU algorithm.

1: Initialization:

2: Set k , t ¼ 0, λ, μ, ε > 0, U0, V0
1, V

0
2, V

0
3, D

0
1, D

0
2, D

0
3

3: Repeat:

4: Wk
NLS ¼ 1

jNLSðXk
i j Þjþε

ð13Þ

5: Repeat:

6: Utþ1 ← ðATAþ 2IÞ−1½AT ðVt
1 þ Dt

1Þ þ ðVt
2 þ Dt

2Þ þ ðVt
3 þ Dt

3Þ� ð25Þ

7: Vtþ1
1 ← 1

1þμ ½Yþ μðAUt − Dt
1Þ� ð27Þ

8: Vtþ1
2 ← soft

�
Utþ1 − Dt

2;
λ
μW

k
NLS

�
ð29Þ

9: Vtþ1
3 ← maxðUtþ1 − Dt

3; 0Þ ð32Þ

10: Update LaGrange multipliers:

11: Dtþ1
1 ← Dt

1 − AUtþ1 þ Vtþ1
1

12: Dtþ1
2 ← Dt

2 − Utþ1 þ Vtþ1
2

13: Dtþ1
3 ← Dt

3 − Utþ1 þ Vtþ1
3

14: Update iteration:

15: k ← k þ 1

16: t ← t þ 1

17: until some stopping criterion is satisfied.
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where NLSð·Þ is a nonlocal similarity matrix extracted from the abundance matrix in each iter-
ation, which is calculated by Eq. (11).

Equation (12) can be expressed as

EQ-TARGET;temp:intralink-;e014;116;699min
X

1

2
kAX − Yk2F þ λkWNLS ⊙ Xk1 þ ιRþðXÞ; (14)

where ιRþðXÞ ¼
P

n
i¼1 ιRþðXiÞ is an index function, Xi is the i’th column of X, and if Xi is

nonnegative, then ιRþðXiÞ ¼ 0, and otherwise ιRþðXiÞ ¼ þ∞.
The equivalent constrained formula for Eq. (14) is

EQ-TARGET;temp:intralink-;e015;116;621min
X

1

2
kV1 −Yk2F þ λkWNLS ⊙ V2k1 þ ιRþðV3Þ s:t: V1 ¼ AU; V2 ¼ U; V3 ¼ U: (15)

Algorithm 1 shows the algorithmic pseudocode.

3.3 Parallel Computing-Based G-NLWSU

HSI data have extremely high dimensions and complex topographic features, which means they
require much computational time to perform an unmixing task. With recent hardware develop-
ments, graphics processing units (GPUs) have been used with large-scale data in parallel com-
puting strategies, such as to improve computational efficiency in hyperspectral classification.49,50

We introduce a parallel computing-based G-NLWSU method, PG-NLWSU. The computing
strategy considers the Compute Unified Device Architecture (CUDA) platform, a general-
purpose computing architecture developed by NVIDIA that uses the parallel computing power
of a GPU. CUDA controls the GPU to perform calculations through kernel functions. Since its
layered structure (grid, block, and thread) is similar to that of three-dimensional images, it can
be intuitively applied to the field of images. We use a hybrid programming strategy based on
MATLAB and CUDA to accelerate the algorithm.

The data interaction between the host (multicore central processing units, CPUs) and device
(GPUs) usually consumes much computational time and storage space. To alleviate these prob-
lems, we minimize the number of data transfers between the host and device, load some impor-
tant calculation tasks to the GPU, return the results to the CPU, and use space preallocation or
memory reduction to reduce memory consumption. After finishing calculations in the GPU, the
occupied memory is released.

The complexity ofWNLS in each iteration isOðMPSÞ, where S is the number of sub-blocks of
the image. To improve efficiency, we optimize the algorithm as follows:

1. The data of the matrix U are transferred to the GPU before the outer loop, and the non-
local similar block operation is performed by the NLS_kernel function.

2. A grid, composed of thread, blocks, and threads in stages, is configured in the
kernel function. This is shown in Fig. 2, where threadnum ¼ ½16;16�, blocknum ¼
½widthþ16−1

width
; heightþ16−1

height
�.

The pseudocode of PG-NLWSU can be found in Algorithm 2.

3.4 Computational Complexity Analysis

The experiment in this article was performed using MATLAB R2018a and CUDA v10.2, a
GTX1060 GPU, and 16 GB of memory.

For G-NLWSU, the most expensive computational step is WNLS, which has order of com-
plexity OðMPSÞ, where P is the total number of pixels of the image and S is the number of sub-
blocks. For U, let p1 ¼ ATAþ 2I, p2 ¼ p−1

1 , p3 ¼ ATðVt
1 þ Dt

1Þ, p4 ¼ p2p3, with respective
complexity OðLM2Þ, OðM3Þ, OðMPLÞ, OðPM2Þ. It is worth noting that P and S are usually
greater than L andM, so the complexity ofU isOðMP · maxfL;MgÞ. The complexity ofVt

1 and
Dt

1 isOðMPLÞ, and the complexity of other steps isOðMPÞ. In PG-NLWSU, the computational
complexity of WNLS is O½MS · ðP∕CÞ�, where C is the parallel computing power of the GPU.
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4 Experiments and Analysis

In this section, we evaluated PG-NLWSU on simulated and real datasets.

4.1 Evaluation Metrics

We consider four evaluation metrics to clearly compare the performance of the algorithms.

(1) Signal reconstruction error (SRE):

EQ-TARGET;temp:intralink-;e016;116;101SREðdBÞ ¼ 10 · log10

�
EðkXk22Þ

EðkX − X̂k22Þ

�
; (16)

Algorithm 2 Pseudocode of PG-NLWSU algorithm

1: Initialization:

2: Set k , t ¼ 0, λ, μ, ε > 0, U0, V0
1, V

0
2, V

0
3, D

0
1, D

0
2, D

0
3

3: Repeat:

4: Step 1. Transfer data U from host to device.

5: Step 2. Execute NLS_kernel to calculate Px .

6: Step 3. Transfer Px from device to host.

7: Step 4. Compute Px ¼ svdðPx Þ on CPU.

8: Step 5. Compute Wk
NLS ¼ 1

jNLSðXk
i j Þjþε

on CPU.

9: Repeat:

10: Step 6. Compute Utþ1, Vtþ1
1 , Vtþ1

2 , Vtþ1
3 , Dtþ1

1 , Dtþ1
2 , Dtþ1

3 on CPU.

11: Step 7. Update k , t .

12: until some stopping criterion is satisfied.

Fig. 2 Grid, blocks, and threads.
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where X is the estimated abundance matrix, X̂ is the true abundance matrix, and Eð·Þ
denotes expectation. The larger the SRE, the smaller the error between the estimated and
true abundance matrices.

(2) Probability of success (Ps), which is an estimate of the probability that the relative error
capability is less than a certain threshold:

EQ-TARGET;temp:intralink-;e017;116;675Ps ≡ P

�kX − X̂k2
kXk2 ≤ threshold

�
; (17)

where X is the estimation matrix and X̂ is the true matrix. According to previous work in
SUnSAL-TV, we assume threshold⩽3.16 ð5 dBÞ. When Ps ¼ 1, then the total relative
error power of abundance is less than 1∕3.16. We use Ps to supplement the stability
evaluation index of the algorithm (SRE alone cannot derive the stability of the estimate).

(3) Sparsity:

EQ-TARGET;temp:intralink-;e018;116;569Sparsity ¼ s
mn

; (18)

where s is the number of elements in X greater than 0.005, andmn is the total number of
elements in the matrix X. The smaller the Sparsity the higher the sparsity of the matrix.

(4) Root mean square error (RMSE):

EQ-TARGET;temp:intralink-;e019;116;494RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

mn

Xm
i¼1

Xn
j¼1

ðXij − X̂ijÞ2
vuut ; (19)

where Xij, X̂ij are the respective element values at position ði; jÞ in the estimation matrix
and real matrix, m and n are the matrix dimensions. The smaller the RMSE, the smaller
the error between the measured and true values.

Based on the above descriptions, the evaluation metrics, i.e., SRE and RMSE, are used to evalu-
ate the error of algorithm unmixing results. Ps was used to evaluate the stability of the algorithm.
Sparsity focused on comparing the sparsity of unmixing results.

4.2 Experiment on Simulated Datasets

PG-NLWSU was tested on two simulated datasets to validate its unmixing performance. To
facilitate the comparison, SUnSAL, CLSUnSAL, NCLS-TV, and SUnSAL-TV were run on the
simulated dataset to evaluate the algorithm results.

4.2.1 Simulated datasets

The spectral library A ∈ R224×240 used in the simulated data experiment is a combination of 240
mineral types from the United States Geological Survey (USGS) library. The reflectance values
of the spectral characteristics are given in 224 spectral bands and are evenly distributed in the
range of 0.4 to 2.5 μm.

1. Simulated data cube 1 (DC1) is composed of nine endmember features randomly
selected from spectral library A.51 It contains 100 × 100 pixels and 224 bands, with
added Gaussian noise (SNR ¼ 30, 40, 50). The ground truth abundances of each end-
member are shown in Fig. 3.

2. As shown in Fig. 4, simulated data cube 2 (DC2) is composed of five endmembers,
and the abundance matrix is generated using the hyperspectral imagery synthesis
(EIAS) toolbox. The abundance distribution of the endmembers in DC2 is relatively
uniform and contains much spatial information. Independent and uniformly distributed
Gaussian noise (SNR ¼ 30, 40, 50) is added.

Li et al.: Nonlocal weighted sparse unmixing based on global search and parallel optimization
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4.2.2 Influence of regularization parameters

We tested the effect of regularization parameters of different algorithms on the SRE in the range
of 0 to 0.1 on DC1. The results are shown in Fig. 5. Among the algorithms, PG-NLWSU had the

Fig. 3 Real abundances of endmembers in DC1, where (a)–(i) are abundances of endmembers
1 to 9, respectively.

Fig. 4 Real abundances of endmembers in DC2, where (a)–(e) are abundances of endmembers
1 to 5, respectively.
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highest accuracy. Comparing the curves of NCLS-TV and SUnSAL-TV, it can be seen that the
spatial regularization parameter λTV has a greater influence than λ on the algorithm accuracy. By
comparing SUnSAL, CLSUnSAL, NCLS-TV, and PG-NLWSU, it can be seen that the unmixing
algorithm using spatial information more easily obtains the optimal solution.

4.2.3 Optimization effect analysis

We compare the speed of nonlocal similarity block extraction (the outer loop) between
G-NLWSU and PG-NLWSU on the following data:

(1) DC1: data size 100 × 100 × 224.
(2) DC2: data size 100 × 100 × 224.
(3) Cuprite dataset: data size 250 × 191 × 188.

The results are shown in Table 1.
Speed is defined as the ratio of the running times of the two algorithms. According to the

information in the table, as image size and amount of information increase, the advantages of
parallel acceleration become more obvious.

Fig. 5 Influence of regularization parameters on algorithms: (a) SUnSAL, (b) NCLS-TV,
(c) CLSUnSAL, (d) SUnSAL-TV (λ ¼ 0.01), and (e) PG-NLWSU.

Table 1 Comparison of computing efficiency between G-NLWSU
and PG-NLWSU.

Dataset Algorithm Time Speed

DC1 G-NLWSU 384.9466 (s) 12.3871

PG-NLWSU 31.4859 (s)

DC2 G-NLWSU 387.5336 (s) 12.2086

PG-NLWSU 31.7428 (s)

Cuprite G-NLWSU 282.1 (m) 26.8667

PG-NLWSU 10.5 (m)
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4.2.4 Results on simulated data sets

We show the experimental results of PG-NLWSU and comparison algorithms on two simulated
datasets. Figure 6 shows the unmixing results of different algorithms on endmembers 1, 3, 7, 8,
and 9 of DC1 when SNR ¼ 30. Figure 7 shows the unmixing results of all the endmembers on
DC2 for different algorithms when SNR ¼ 30. Table 2 shows the optimal parameters of all algo-
rithms when SNR is fixed at 30, 40, and 50 dB on simulated data sets DC1 and DC2. Tables 3
and 4 show the index evaluation results of all algorithms on DC1 and DC2 when the parameters
are optimal. In Tables 3 and 4, bold represents the best experimental result.

As can be seen from Figs. 6 and 7, the endmember abundance results estimated by SUnSAL
are relatively poor. The result of CLSUnSAL is similar to that of SUnSAL but contains more
information. Comparing NCLS-TV and SUnSAL-TV, one can find that TV regularization leads
to excessive smoothing of abundance, which is obvious in the results of DC1 endmembers 7 and
8 and DC2 endmember 3. The unmixing effect of PG-NLWSU is significantly better than that of

Fig. 6 Abundances of endmembers 1, 3, 7, 8, 9 estimated by all algorithms on DC1.

Li et al.: Nonlocal weighted sparse unmixing based on global search and parallel optimization

Journal of Applied Remote Sensing 016501-11 Jan–Mar 2021 • Vol. 15(1)



other algorithms, indicating that the nonlocal weighting matrix improves the performance of the
algorithm.

From the results in Table 3, PG-NLWSU algorithm can provide higher SRE, Ps, sparsity, and
RMSE results than that of other comparison algorithms at different noise levels especially for the
worse noise scenario such as 30 dB, which means that PG-NLWSU has high robustness to noises.

According to the results in Table 4, the results of SRE, sparsity, and RMSE under all noise
intensity show that the PG-NLWSU can generate sparser unmixing accuracy and than other
algorithms primarily because DC2 maintains relatively uniform spatial distribution, indicating
that the nonlocal weighted model effectively promotes the sparseness of the algorithm. For Ps,
PG-NLWSU still captures the best result especially at 30 dB, which implies that the proposed
PG-NLWSU algorithm is very stable.

The computational efficiency of all algorithms on DC1 and DC2 is shown in Table 5, and bold
represents the best experimental results. SUnSAL takes the least time. NCLS-TV and SUnSAL-
TV run slower because they must extract neighborhood information of images, whereas
CLSUnSAL and PG-NLWSU run longer, but when the SNR increases, PG-NLWSU shows
higher calculational efficiency.

Fig. 7 Abundances of endmembers 1, 2, 3, 4, 5 estimated by all algorithms on DC2.
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4.3 Experiment on Real Dataset

We experimentally evaluate the algorithm on the AVIRIS Cuprite dataset, whose information
was collected from a copper mine in Nevada and is widely used to verify spectral unmixing

Table 2 Parameter values used by different algorithms in experi-
ments on simulated datasets.

Data
cube Algorithm

SNR

30 dB 40 dB 50 dB

DC1 SUnSAL λ ¼ 5e − 2 λ ¼ 5e − 3 λ ¼ 5e − 4

NCLS-TV λ ¼ 5e − 3 λ ¼ 7e − 4 λ ¼ 7e − 4

CLSUnSAL λ ¼ 9e − 2 λ ¼ 5e − 2 λ ¼ 5e − 3

SUnSAL-TV λ ¼ 5e − 3 λ ¼ 5e − 3 λ ¼ 5e − 4

λTV ¼ 5e − 3 λTV ¼ 7e − 4 λTV ¼ 7e − 4

Proposed λ ¼ 1e − 3 λ ¼ 9e − 5 λ ¼ 9e − 5

DC2 SUnSAL λ ¼ 5e − 3 λ ¼ 5e − 3 λ ¼ 5e − 3

NCLS-TV λ ¼ 5e − 3 λ ¼ 5e − 3 λ ¼ 5e − 3

CLSUnSAL λ ¼ 9e − 2 λ ¼ 9e − 2 λ ¼ 9e − 2

SUnSAL-TV λ ¼ 5e − 3 λ ¼ 5e − 3 λ ¼ 5e − 3

λTV ¼ 5e − 3 λTV ¼ 5e − 3 λTV ¼ 5e − 4

Proposed λ ¼ 9e − 4 λ ¼ 9e − 4 λ ¼ 9e − 4

Table 3 Evaluation results of different algorithms in experiments on simulated dataset 1.

SNR Algorithm SRE Ps Sparsity RMSE

30 dB SUnSAL 3.0749 0.5986 0.0455 0.3613

NCLS-TV 4.1514 0.7352 0.0792 0.2820

CLSUnSAL 4.1061 0.7345 0.0688 0.2850

SUnSAL-TV 4.9235 0.8284 0.0572 0.2361

Proposed 8.3768 0.9852 0.0207 0.1066

40 dB SUnSAL 6.6155 0.9390 0.0481 0.1599

NCLS-TV 6.7969 0.9793 0.0701 0.1534

CLSUnSAL 7.9331 1.0000 0.0461 0.1181

SUnSAL-TV 8.0080 0.9950 0.0424 0.1160

Proposed 12.9224 1.0000 0.0183 0.0374

50 dB SUnSAL 9.0011 0.9997 0.0388 0.0923

NCLS-TV 9.9019 1.0000 0.0433 0.0750

CLSUnSAL 11.9637 1.0000 0.0245 0.0467

SUnSAL-TV 10.1044 0.9993 0.0259 0.0716

Proposed 15.3358 1.0000 0.0146 0.0215
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algorithms. Figure 8 shows the mineral distribution map drawn by USGS in 1995. The band
range is 0.4 to 2.5 μm. A 250 × 191-pixel subregion with 188 bands is considered, where noisy
bands 1 and 2 and water-absorption bands 104 to 113 and 148 to 167 are removed from the
original 224 bands. The spectral library A ∈ R188×498 also processed and reserved 188 bands
of the USGS spectral library.

Table 4 Evaluation results of different algorithms in experiments on simulated dataset 2.

SNR Algorithm SRE Ps Sparsity RMSE

30 dB SUnSAL 3.3858 0.7996 0.0688 0.3244

NCLS-TV 5.6221 0.9638 0.0755 0.1938

CLSUnSAL 5.0941 0.9302 0.0602 0.2189

SUnSAL-TV 6.4853 0.9764 0.0511 0.1589

Proposed 9.5163 1.0000 0.0215 0.0791

40 dB SUnSAL 7.5352 1.0000 0.0543 0.1248

NCLS-TV 7.2637 0.9859 0.0514 0.1328

CLSUnSAL 8.5245 1.0000 0.0464 0.0994

SUnSAL-TV 8.3807 0.9896 0.0317 0.1027

Proposed 11.8972 1.0000 0.0204 0.0457

50 dB SUnSAL 11.1740 1.0000 0.0315 0.0540

NCLS-TV 11.3668 1.0000 0.0403 0.0516

CLSUnSAL 12.4526 1.0000 0.0228 0.0402

SUnSAL-TV 12.5586 1.0000 0.0249 0.0392

Proposed 17.4999 1.0000 0.0208 0.0126

Table 5 Time efficiency of various algorithms on simulated datasets
(in seconds).

Data
cube Algorithm

SNR

30 dB 40 dB 50 dB

DC1 SUnSAL 4.8210 3.8051 3.6672

NCLS-TV 70.8100 111.4890 138.1508

CLSUnSAL 146.7633 160.1402 158.1793

SUnSAL-TV 71.9640 112.7408 151.6289

Proposed 380.1912 283.4539 167.6324

DC2 SUnSAL 4.6042 3.8688 4.1016

NCLS-TV 64.4921 60.9866 60.3077

CLSUnSAL 161.0892 152.7736 154.1891

SUnSAL-TV 74.3964 75.2871 66.1086

Proposed 379.0015 206.9122 154.2739
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Figure 9 shows the Cuprite data cube and spectral library A1. Since no real abundance map
can be used, the experimental results of this algorithm are compared with those of SUnSAL,
CLSUnSAL, NCLS-TV, and SUnSAL-TV, with results as shown in Fig. 10.

Figure 10 compares the estimated abundances of three minerals (alunite, buddingtonite, and
chalcedony) in the cuprite area by SUnSAL, NCLS-TV, CLSUnSAL, SUnSAL-TV, and PG-
NLWSU. We set the parameters of SUnSAL, NCLS-TV, CLSUnSAL, and PG-NLWSU to
λ ¼ 1e − 3, λTV ¼ 3e − 9, λ ¼ 9e − 2 and λ ¼ 9e − 5, respectively, and set the parameters
of SUnSAL-TV to λ ¼ 1e − 3, λTV ¼ 3e − 9. The abundance graph of buddingtonite clearly
shows the performance of different algorithms in dealing with noise, whereas chalcedony shows
the algorithm’s more detailed unmixing ability. It can be seen that the abundance graph of
PG-NLWSU performs better than those of the other algorithms.

Fig. 8 USGS uses Tricorder 3.3 software to obtain the mineral distribution map of the Cuprite
mining district in Nevada.

Fig. 9 (a) Hyperspectral cubes in cuprite area and (b) spectral library A1.
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5 Conclusions

SU is a classical method to solve the problem of spectral unmixing. To use a weighted l1 norm to
enhance the sparsity of the abundance matrix is a current research hotspot. We propose a non-
local weighted sparse unmixing algorithm (PG-NLWSU) based on global search and parallel
acceleration. The nonlocal mean is introduced to the sparse decomposition model through a
weighting factor, for a new method to utilize the nonlocal information of the image. To fully
use this nonlocality, we use a search box of the same size as the image, and parallel computing
improves the computing efficiency. Experimental results show that the proposed algorithm per-
forms better in images with abundant nonlocal information. In future work, we will consider

Fig. 10 Abundance results of different algorithms on Cuprite datasets.
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the texture information of the image and use it to eliminate the smoothing effect caused by the
use of neighborhood or nonlocal information.

6 Appendix A: Model Solution

Equation (15) can be written as

EQ-TARGET;temp:intralink-;e020;116;656min
U;V

gðVÞ s:t: GUþ BV ¼ 0; (20)

where
EQ-TARGET;temp:intralink-;e021;116;610

V ¼ ðV1;V2;V3Þ;

gðVÞ ¼ 1

2
kV1 − Yk2F þ λkWNLS ⊙ V2k1 þ ιRþðV3Þ;

G ¼

2
64
A

I

I

3
75B ¼

2
64
−I 0 0

0 −I 0

0 0 −I

3
75: (21)

Equation (20) is solved by the ADMM algorithm, and its augmented LaGrange function is as
follows:

EQ-TARGET;temp:intralink-;e022;116;483LðU;V;DÞ ≡ gðU;VÞ þ μ

2
kGUþ BV − Dk2F; (22)

where μ > 0, D
μ is the LaGrange multiplier.

Equation (22) is expanded as
EQ-TARGET;temp:intralink-;e023;116;419

LðU;V1;V2;V3;D1;D2;D3Þ ¼
1

2
kV1 − Yk2F þ λkWNLS ⊙ V2k1 þ ιRþðV3Þ

þ μ

2
kAU − V1 − D1k2F þ μ

2
kU − V2 − D2k2F

þ μ

2
kU − V3 − D3k2F: (23)

In Eq. (23), the variables need to be separated during the solution process. When solving for a
variable (e.g., U), other variables default to fixed values (e.g., V, D). We separately solve the
three variables in the above formula, and the optimization function is

EQ-TARGET;temp:intralink-;e024;116;297Utþ1 ← arg min
U

μ

2
kAU − V1 − D1k2F þ μ

2
kU − V2 − D2k2F þ μ

2
kU − V3 − D3k2F: (24)

The matrix derivation solution is

EQ-TARGET;temp:intralink-;e025;116;247Utþ1 ← ðATAþ 2IÞ−1½ATðVt
1 þ Dt

1Þ þ ðVt
2 þ Dt

2Þ þ ðVt
3 þ Dt

3Þ�: (25)

The optimization function of V1 is

EQ-TARGET;temp:intralink-;e026;116;204Vtþ1
1 ← arg min

V1

1

2
kV1 − Yk2F þ μ

2
kAU − V1 − D1k2F; (26)

its solution is

EQ-TARGET;temp:intralink-;e027;116;150Vtþ1
1 ←

1

1þ μ
½Yþ μðAUt − Dt

1Þ�: (27)

The optimization function of V2 is

EQ-TARGET;temp:intralink-;e028;116;96Vtþ1
2 ← arg min

V2

λkWNLS ⊙ V2k1 þ
μ

2
kU − V2 − D2k2F; (28)
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with solution

EQ-TARGET;temp:intralink-;e029;116;723Vtþ1
2 ← soft

�
Ut − Dt

2;
λ

μ
WNLS

�
; (29)

where softða; bÞ is a soft threshold function, expressed as

EQ-TARGET;temp:intralink-;e030;116;667softða; bÞ ≡ signðaÞmaxfjaj − b; 0g; (30)

where signðaÞ is a sign function

EQ-TARGET;temp:intralink-;sec6;116;624

�
1; a > 0

−1; a < 0
:

The optimization function of V3 is

EQ-TARGET;temp:intralink-;e031;116;566Vtþ1
3 ← arg min

V3

ιRþðV3Þ þ
μ

2
kU − V3 − D3k2F; (31)

since the actual role of ιRþ is to remove the nonnegative value of the solution, the solution
of V3 is

EQ-TARGET;temp:intralink-;e032;116;501Vtþ1
3 ← maxðUt − Dt

3; 0Þ: (32)
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