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ABSTRACT. Significance: Reference cerebral near-infrared spectroscopy (NIRS) data on the
pediatric population are scarce, and in most cases, only cerebral oxygen saturation
(SO2) measured by continuous wave spatially resolved spectroscopy NIRS is
reported. Absolute data for baseline optical and hemodynamic parameters are
missing.

Aim: We aimed at collecting baseline cerebral optical parameters [absorption
coefficient, μa; reduced scattering coefficient, μ 0

s; differential pathlength factor
(DPF)] and hemodynamic parameters [oxy-hemoglobin content (HbO2), deoxyhe-
moglobin content (HHb), total hemoglobin content (tHB), SO2] in a large cohort
of pediatric patients. The objectives are to establish reference optical values in this
population and evaluate the reproducibility of a commercial time domain (TD) NIRS
tissue oximeter.

Approach: TD NIRS measurements were performed in the prefrontal cortex at 686
and 830 nm with a 2.5-cm source–detector distance and 1-Hz acquisition rate. Five
independent measurements (after probe replacement) were taken for every subject.
TD NIRS data were fitted to a photon diffusion model to estimate the optical param-
eters. From the absorption coefficients, the hemodynamic parameters were derived
by Beer’s law. Auxological and physiological information was also collected to
explore the potential correlations with NIRS data.

Results: We measured 305 patients in the age range of 2 to 18 years. Absolute
values for baseline optical and hemodynamic parameters were shown as a function
of age and auxological variables. From the analysis of the repositioning after probe
replacement, the time-domain near-infrared spectroscopy device exhibited an aver-
age precision (intended as coefficient of variation) of <5% for μ 0

s, DPF, HbO2, HHb,
and tHb, whereas precision was <2% for SO2.

Conclusions: We provided baseline values for optical and hemodynamic
parameters in a large cohort of healthy pediatric subjects with good precision, pro-
viding a foundation for future investigations into clinically relevant deviations in these
parameters.
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1 Introduction
The ability of red and near-infrared light (∼650 to 1000 nm) to diffuse into human tissues has
fostered the development of a plethora of optical techniques to noninvasively study human brain
functions and diseases.1 Near-infrared spectroscopy (NIRS) was initially introduced to monitor
cerebral oxygen saturation (SO2) in children and adults at the bedside by exploiting the different
absorption spectra of oxygenated and deoxygenated hemoglobin.2,3 Later, functional NIRS
took advantage of the neurovascular coupling mechanism, such as in functional magnetic res-
onance imaging, to provide a complementary tool to study human brain mapping in ecological
settings.4–6 More recently, diffuse correlation spectroscopy (DCS), speckle contrast optical spec-
troscopy (SCOS), and interferometric NIRS completed the hemodynamic description by adding
valuable information on cerebral perfusion and metabolism.7

Neonates, infants, and children, having thinner skulls than adults, show reduced light attenu-
ation and enhanced light penetration; therefore, they represent the ideal target population for
probing the brain through noninvasive optical techniques. Nonetheless, several studies are cur-
rently performed also on adults. The incessant growth of these optical techniques and their adop-
tion in biomedical and clinical applications has been supported by the availability of guidelines
for best practice and (open source) data analysis tools8,9 and by the parallel advance in modeling
light propagation in diffusive media.10,11

Although for several applications the measurement of trends, or relative changes with
respect to a baseline (in arbitrary units), might be sufficient (e.g., when studying the hemo-
dynamic response function following a stimulus or the perfusion changes during a bed tilt test),
the knowledge of the absolute baseline values for the quantities of interest is crucial when it
comes to quantifying those changes in view of a more accurate and robust assessment of the
response.

Aiming for quantitation, the knowledge of tissue optical properties (absorption coefficient,
μa, and reduced scattering coefficient, μ 0

s) is fundamental because it enables accurate modeling of
light propagation in complex heterogeneous structures (such as the human head) and the inves-
tigation of specific features of the optical techniques (e.g., depth penetration, depth sensitivity,
signal-to-noise ratio, and contrast-to-noise ratio).

In the literature, several studies report optical properties of neonates12–20 and adults,21–32

whereas very few focus on the pediatric population with also a limited number of measured
subjects.33–36 NIRS data on population in pediatric age in the majority of cases refer only to
SO2, as measured by continuous wave (CW) spatially resolved spectroscopy NIRS devices,
whereas absolute data for baseline optical and hemodynamic parameters are missing.37

The aim of this work is to collect baseline cerebral optical parameters [absorption coeffi-
cient, μa; reduced scattering coefficient, μ 0

s; and differential pathlength factor (DPF)] and hemo-
dynamic parameters [oxy-hemoglobin content (HbO2), deoxyhemoglobin content (HHb), total
hemoglobin content (tHb ¼ HHbþHbO2; SO2 ¼ HbO2∕tHb)] in a large cohort of pediatric
patients in the age range of 2 to 18 years. The primary objective is to establish reference optical
and hemodynamic values in this population, whereas a secondary (but equally important) objec-
tive is to evaluate the reproducibility of a time domain (TD) NIRS tissue oximeter.

2 Material and Methods

2.1 Subjects
The study was conducted from March 2023 to February 2024 at Buzzi Children’s Hospital
(Milan, Italy) on a pediatric cohort of healthy subjects in stable conditions. The following inclu-
sion criteria were considered: absence of fever, absence of cardiac or pulmonary pathologies, no
chronic diseases, no ongoing pharmacological treatments, stable vital parameters [heart rate
(HR), respiratory frequency (BR), and peripheral oxygen saturation (SpO2)], absence of wound
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in the measured position, and confirmation of normal hematocrit levels through blood analyses.
The study was conducted in accordance with the Helsinki Declaration of 1975, as revised in
2008. The institutional ethics committee approved the protocol (Ethics Committee Milano
Area 1; Study Registration 2022/ST/229; Protocol No. 0004021/2023 Date 30/01/2023).
After receiving information about the study, all participants, or their guardians, provided written
consent.

2.2 Time-Domain Near-Infrared Spectroscopy (TD-NIRS) Device
A commercially available, research-grade, tissue oximeter, NIRSBOX (PIONIRS s.r.l., Milan,
Italy), based on TD-NIRS technology was used (see Fig. 1).38 The device employs proprietary
picosecond diode lasers emitting at 686 and 830 nm, along with a single-photon detector (silicon
photomultiplier, with optical filters to reduce ambient light noise) and timing electronics (time-
to-digital converter, with a 9.7-ps/ch resolution) to record the distribution of time-of-flight
(DTOF) for the photons re-emitted from the tissue. The NIRSBOX device is battery-operated
(7-h lifetime) and hosted in a compact, four-wheel medical grade chart equipped with a 13-in.
screen. In this study, the G5 Goccia optical probe (PIONIRS s.r.l., Milan, Italy) was employed,
characterized by a single channel with a source–detector distance ρ ¼ 2.5 cm and a built-in
capacitive contact sensor to ensure accurate application on the tissue and secure enablement
of laser emission. The probe is flexible, waterproof, and undergoes sanitation with isopropyl
alcohol among each patient. To acquire the instrument response function (IRF), the probe is
positioned into the PIONIRS IRF box.39

2.3 Protocol
Measurements were performed on the left prefrontal cortex (Fp1 position of the 10/20
International System Mapping), targeting cerebral optical properties and hemodynamic param-
eters. The protocol included the acquisition of five DTOFs at a 1-Hz acquisition frequency. Then,
other four identical measurements were performed after probe replacement (i.e., removing the
probe from the tissue, placing the probe again in contact with the tissue, and acquiring data).
Overall, 25 DTOFs were acquired (five replacements times five DTOFs/replacement) from each
subject. The optical probe was manually held in place by the clinical operator during measure-
ment and kept in hand during probe removal and probe replacement. The entire measurement
protocol took ∼2 min per subject. To assess a child’s growth and physical development, in all

Fig. 1 (a) NIRSBOX tissue oximeter, as used in the clinical environment (cart-mounted configu-
ration). (b) G5 Goccia probe. (c) IRF box.
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children, auxological measurements including weight, height, body mass index (BMI), and head
circumference were recorded. BMI values were calculated as body weight (kg) divided by
squared height (m2) and then standardized into BMI z-scores according to the reference values
obtained from the World Health Organization database,40 specifically “BMI-for-age 2 to 5 years”
and “BMI-for-age 5 to 19 years.”41,42 In addition, following the usual clinical practice, HR, BR,
and SpO2 were measured by standard clinical grade devices, whereas hematocrit percentage
(HTC) and hemoglobin concentration (Hb) were obtained by venous sample.

2.4 Data Analysis
The solution of the photon diffusion equation for a semi-infinite homogeneous medium with
extrapolated boundary conditions was used43 (after convolution with the IRF) to retrieve from
each measured DTOF the optical properties (absorption coefficient, μa, and reduced scattering
coefficient, μ 0

s) of the tissue under investigation. Then, from each DTOF, the DPF was calculated
as DPFðλÞ ¼ vhtðλÞi∕ρ, where htðλÞi is the photon mean time of flight, v ¼ c∕n is the speed
of light in vacuum, n ¼ 1.4 is the tissue refractive index (assumed constant), and λ is the
wavelength.

From μa at 686 and 830 nm by exploiting the Beer law,44 HbO2 and HHb were obtained
assuming hemoglobin as the unique chromophore contributing to absorption. Hence, tHb and
SO2 were calculated. Unless differently specified, for each subject, the optical and hemodynamic
parameters were averaged over all the 25 acquired DTOFs.

2.5 Statistical Analysis
The correlation (linear relationship) between two variables has been evaluated by computing the
Pearson correlation coefficient r and the corresponding p-value. We considered no correlation
for jrj < 0.3, low correlation 0.3 ≤ jrj < 0.5, moderate correlation for 0.5 ≤ jrj < 0.7, and high
correlation for 0.7 ≤ jrj < 1.

3 Results

3.1 Demographic and Clinical Features of the Measured Subjects
A total of 307 healthy participants aged between 2 and 18 years were enrolled over 11 months.
Two subjects initially enrolled were later excluded (not compliant due to intense crying during
the measurements), resulting in 305 subjects. As shown in Table 1, the population is uniformly
distributed according to gender and age, with 52% females (9.6� 4.6 years) and 48% males
(9.5� 4.2 years).

Demographic and auxological descriptors are reported in Table 2. Data do not show abnor-
mal trends. As expected, there is a strong correlation between age and head circumference
(Pearson’s correlation coefficient of 0.7 both for females and males) and a moderate correlation

Table 1 Enrolled subjects per age and gender.

Age (years) Female (no.) Male (no.) Total (no.) Female (%) Male (%) Total (%)

2 to 4 20 23 43 13 16 14

4 to 6 21 16 37 13 11 12

6 to 8 25 18 43 16 12 14

8 to 10 17 19 36 11 13 12

10 to 12 17 21 38 11 14 12

12 to 14 22 27 49 14 18 16

14 to 16 22 14 36 14 9 12

16 to 18 13 10 23 8 7 8

Total 157 148 305 100 100 100
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between age and BMI (Pearson’s correlation coefficient of 0.5 and 0.6 for females and males,
respectively).

3.2 Physiological Descriptors of the Measured Subjects
Table 3 shows the physiological descriptors (average ± standard deviation) of the subjects per
age cluster and gender. Overall, no abnormal values for all parameters were recorded. The aver-
age HTC ranges from 34.3% to 41.9%. A moderate decrease of HR and BR with age is observed,
as expected (Pearson’s correlation coefficient for HR: r ¼ −0.6 with p-value ¼ 1 × 10−15 and
r ¼ −0.5 with p-value ¼ 2 × 10−09, for females and males, respectively; Pearson’s correlation
coefficient for BR: r ¼ −0.4 both for females and males with p-value ¼ 5 × 10−08 and
1 × 10−07, respectively). The average SpO2 is higher than 98.1% with no correlation with age.
As expected, HTC and Hb are strongly correlated (Pearson’s correlation coefficient of 0.9 both
for females and males with p-value ¼ 3 × 10−71 and 4 × 10−60, respectively), whereas a low
correlation of both HTC and Hb with age is observed (Pearson’s correlation coefficient for
HTC: r ¼ 0.3 with p-value ¼ 1 × 10−04 and r ¼ 0.4 with p-value ¼ 1 × 10−08 for females and
males, respectively; Pearson’s correlation coefficient for Hb: r ¼ 0.3 with p-value ¼ 1 × 10−04

and r ¼ 0.4 with p-value ¼ 5 × 10−07 for females and males, respectively).

3.3 Optical Properties of the Measured Subjects
Table 4 reports the optical properties (average ± standard deviation) of the subjects at 686 and
830 nm per age (2-year clusters) and gender. For all variables, no differences can be found
between the female and male groups at any age. The average μa values range from 0.16 to
0.25 cm−1 at 686 nm and from 0.17 to 0.24 cm−1 at 830 nm with an overall dispersion (as mea-
sured by the coefficient of variation over the entire population) of 21% at 686 nm and 18% at
830 nm. As expected, according to the empirical approximation of Mie’s theory,45 μ 0

s is higher at
686 than at 830 nm with average values ranging from 13.2 to 14.4 cm−1 at 686 nm and from 11.3
to 12.3 cm−1 at 830 nm. Interestingly, the dispersion for scattering data is lower (almost half)
than the dispersion for the absorption data with 10% at 686 nm and 9% at 830 nm. The average
DPF varies from 4.2 to 5.2 at 686 nm and from 3.8 to 4.8 at 830 nm with 16% and 12% dispersion
at 686 and 830 nm, respectively.

Figures 2 and 3 show the optical properties of the subjects (females and males at 686 and
830 nm, respectively) as a function of age, BMI z-score, and head circumference. Each dot rep-
resents a subject. As a general comment, we can notice the presence of few outliers in the dis-
tributions of the optical parameters. To evaluate the presence of correlations, we have reported in

Table 2 Auxological descriptors (average ± standard deviation) of the subjects per age and
gender.

Age (years)

BMI (kg∕m2) BMI z-score Head circumference (cm)

Female Male Female Male Female Male

2 to 4 15.0 ± 1.5 15.4 ± 1.5 −0.3 ± 1.0 −0.1 ± 1.2 48.9 ± 1.6 50.4 ± 1.5

4 to 6 14.8 ± 1.7 15.2 ± 1.8 −0.3 ± 1.0 −0.1 ± 1.3 50.8 ± 1.6 52.1 ± 1.3

6 to 8 16.7 ± 3.5 17.4 ± 6.0 0.7 ± 1.9 1.1 ± 3.6 52.2 ± 2.1 52.2 ± 1.8

8 to 10 19.6 ± 5.3 17.8 ± 3.5 1.5 ± 2.3 0.9 ± 1.9 52.8 ± 2.3 53.1 ± 1.4

10 to 12 19.6 ± 5.4 18.7 ± 3.3 0.9 ± 2.0 0.8 ± 1.5 53.5 ± 2.0 54.2 ± 1.8

12 to 14 22.6 ± 7.4 23.9 ± 7.1 1.4 ± 2.5 2.3 ± 2.8 54.7 ± 2.0 55.3 ± 1.8

14 to 16 22.4 ± 6.7 23.3 ± 4.8 0.6 ± 2.0 1.2 ± 1.5 54.9 ± 2.2 55.7 ± 2.9

16 to 18 23.1 ± 4.8 24.0 ± 6.4 0.6 ± 1.4 0.9 ± 2.0 55.9 ± 1.4 56.9 ± 2.8

Total 19.0 ± 5.9 19.3 ± 5.8 0.6 ± 1.9 0.9 ± 2.3 52.8 ± 2.9 53.5 ± 2.7
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Table 5 the Pearson’s correlation coefficient r and the related p-value. We have a moderate/low
inverse correlation with age for μa in females (r ¼ −0.5 and −0.3 with p-value ¼ 4 × 10−11 and
2 × 10−05 at 686 and 830 nm, respectively) and no correlation in males. No correlation with age is
found for μ 0

s for both females and males. There is a moderate/low correlation (r ¼ 0.5 and 0.4
with p-value ¼ 8 × 10−12 and 4 × 10−09 at 686 and 830 nm, respectively) with age for DPF in
females, whereas there is a low correlation only at 686 nm (r ¼ 0.3 with p-value ¼ 9 × 10−05)
for DPF in males. Regarding the correlation with BMI z-score, we have a low inverse correlation
for μa in females (r ¼ −0.4 and −0.3 with p-value ¼ 1 × 10−07 and 2 × 10−05 at 686 and
830 nm, respectively) and a low correlation in males only at 686 nm (r ¼ −0.3 with
p-value ¼ 2 × 10−04). No correlation with BMI z-score for μ 0

s is observed in males, whereas
a low correlation at 686 nm is found in females (r ¼ −0.3 with p-value ¼ 4 × 10−04).
Finally, no correlation with BMI z-score for DPF is found in the female and male groups. A
moderate or low inverse correlation (r ¼ −0.5 and −0.3 with p-value ¼ 3 × 10−09 and
6 × 10−05 at 686 nm and 830 nm, respectively) with head circumference is observed for μa
in females, whereas we have a low inverse correlation only at 686 nm (r ¼ −0.3 with
p-value ¼ 6 × 10−04) in males. Again, no correlation is found for μ 0

s in both the female and male
groups. A low correlation with head circumference for DPF in females (r ¼ 0.4 both at 686 and

Fig. 2 Optical properties of the subjects (female, red circles; male, blue triangles) at 686 nm as a
function of age (left column), BMI z-score (middle column), and head circumference (right column).
Top row: absorption coefficient (cm−1), middle row: reduced scattering coefficient (cm−1), and bot-
tom row: differential pathlength factor.
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830 nm with p − value ¼ 1 × 10−8 and 1 × 10−06, respectively) and a low correlation in males at
686 nm (r ¼ 0.3 with p-value ¼ 2 × 10−5) are observed.

We have compared the results for the DPF (with no distinction between females and males)
with the general equationDPFðA; λÞ ¼ αþ βAγ þ δλ3 þ ελ3 þ ζλ, where A is the age in years and
λ the wavelength in nanometers, derived by Scholkmann and Wolf.46 When using the original
values for parameters α − ζ, the agreement is not perfect as shown in Fig. 4(a). However, we
notice that with only a slight change (<0.5%) from α ¼ 223.3 to α ¼ 222.2 (obtained by min-
imizing the error between the DPF model and data), the agreement improves as shown in
Fig. 4(b). However, the correlation is low or null because the Pearson correlation coefficient
is 0.3 and 0.2, respectively at 686 nm at 830 nm, probably affected by some outliers.

3.4 Hemodynamic Properties of the Measured Subjects
Table 6 shows the hemodynamic parameters (average ± standard deviation) of the subjects per
age cluster and gender. For all variables, no differences can be found between the female and
male groups at any age. The averageHbO2 and HHb values range from 55.9 to 86.0 μM and from
25.4 to 39.3 μM, respectively, with an overall dispersion of 18% and 23%. These values result in
an average tHb ranging from 81.3 to 120.0 μM with 18% dispersion and average SO2 in the
range from 64.3% to 71.8% with 6% dispersion.

Fig. 3 Optical properties of the subjects (female, purple squares; male, cyan diamonds) at 830 nm
as a function of age (left column), BMI z-score (middle column), and head circumference (right
column). Top row: absorption coefficient (cm−1), middle row: reduced scattering coefficient
(cm−1), and bottom row: differential pathlength factor.
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Figure 5 shows the hemodynamic parameters of the subjects (female and male) as a function
of age, BMI z-score, or head circumference, whereas in Table 7, we report the corresponding
Pearson’s correlation coefficients r and p-values. No correlation with age for HbO2 is found for
both females and males. Conversely, moderate (r ¼ −0.5 with p-value ¼ 1 × 10−12) inverse cor-
relation with age is found for HHb in females and low inverse correlation (r ¼ −0.3 with
p-value ¼ 3 × 10−04) in males. Low (r ¼ −0.4 with p-value ¼ 3 × 10−06) inverse correlation
with age is present for tHb in females only, whereas a moderate correlation for SO2 is found
for both females and males (r ¼ 0.5 with p-value ¼ 1 × 10−12 and 3 × 10−09, respectively).

Low inverse correlation with BMI z-score is found for HbO2 in females (r ¼ −0.4 with
p-value ¼ 4 × 10−06), whereas no correlation is observed in males. A moderate inverse corre-
lation (r ¼ −0.6 with p-value ¼ 4 × 10−15) for HHb is observed in females, and a low inverse
correlation (r ¼ −0.4 with p-value ¼ 8 × 10−06) in males. There is a moderate inverse correla-
tion (r ¼ −0.5with p-value ¼ 1 × 10−10) with BMI z-score for tHb in females but no correlation

Fig. 4 DPF at 686 and 830 nm as a function of age and estimates obtained by the general equa-
tion47 with α ¼ 223.3 (a) and with α ¼ 222.2 (b).

Table 6 Hemodynamic properties (average ± standard deviation) of the subjects per age and
gender.

Age
(years)

HbO2 (μM) HHb (μM) tHb (μM) SO2 (%)

Female Male Female Male Female Male Female Male

2 to 4 65.9 ± 8.2 72.6 ± 8.0 36.3 ± 5.5 39.3 ± 5.0 102.2 ± 10.9 111.8 ± 10.9 64.5 ± 3.9 64.9 ± 3.1

4 to 6 69.4 ± 8.7 77.3 ± 9.7 38.5 ± 6.0 39.2 ± 5.4 107.9 ± 13.3 116.6 ± 13.5 64.3 ± 2.8 66.3 ± 2.8

6 to 8 69.5 ± 11.8 74.4 ± 12.2 36.4 ± 6.3 37.5 ± 7.9 105.9 ± 16.8 112.0 ± 17.9 65.5 ± 3.1 66.6 ± 3.6

8 to 10 72.3 ± 8.5 70.4 ± 8.7 36.5 ± 5.7 35.1 ± 5.5 108.8 ± 12.9 105.4 ± 11.0 66.5 ± 3.0 66.7 ± 4.3

10 to 12 74.0 ± 14.3 73.9 ± 12.1 34.7 ± 10.4 33.8 ± 7.0 108.8 ± 23.9 107.7 ± 16.3 68.5 ± 3.4 68.7 ± 4.5

12 to 14 70.1 ± 12.0 80.1 ± 15.4 30.2 ± 6.2 35.7 ± 9.3 100.3 ± 17.2 115.8 ± 22.7 70.0 ± 3.1 69.3 ± 3.9

14 to 16 61.7 ± 11.6 86.0 ± 24.1 27.5 ± 5.8 34.0 ± 10.8 89.2 ± 16.0 120.0 ± 31.7 69.2 ± 3.9 71.8 ± 6.0

16 to 18 55.9 ± 9.4 73.5 ± 15.6 25.4 ± 6.5 30.2 ± 11.2 81.3 ± 15.0 103.7 ± 24.1 69.0 ± 3.6 71.5 ± 5.9

Total 67.7 ± 11.9 75.9 ± 14.2 33.5 ± 7.9 36.0 ± 8.2 101.2 ± 18.3 111.9 ± 19.5 67.1 ± 4.0 67.9 ± 4.8
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in males. SO2 has a low correlation with BMI z-score for both females and males (r ¼ 0.4 for
both groups with p-value ¼ 5 × 10−08 and 1 × 10−07, respectively).

No correlation with head circumference for HbO2 is observed for both females and males.
Moderate inverse correlation (r ¼ −0.5 with p-value ¼ 4 × 10−10) is found for HHb in females
and low inverse correlation (r ¼ −0.3 with p-value ¼ 3 × 10−05) in males. There is a low cor-
relation (r ¼ 0.3 with p-value ¼ 1 × 10−05) for tHb in females but no correlation in males. There
is a low correlation (r ¼ 0.4 with p-value ¼ 4 × 10−09) for SO2 in females and moderate cor-
relation (r ¼ 0.5 with p-value ¼ 1 × 10−09) in males.

Fig. 5 Hemodynamic parameters of the subjects (female, purple circle; male, cyan triangle) as a
function of age (left column), BMI z-score (middle column), and head circumference (right column).
Rows from top to bottom: HbO2 (μM), HHb (μM), tHb (μM), and SO2 (%).
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3.5 Precision of the Estimates of Optical and Hemodynamic Parameters of the
Measured Subjects

The precision of measured optical and hemodynamic properties was evaluated by calculating for
each subject the coefficient of variation CVðxÞ ¼ 100σðxÞ∕mðxÞ, where x is the variable under
study (e.g., μ 0

s or HbO2), mðxÞ is the average, and σðxÞ is the standard deviation of the five

Table 7 Pearson’s correlation coefficient r and corresponding p-value for hemodynamic proper-
ties (bold 0.5 ≤ jr j < 0.7 moderate correlation, italics 0.3 ≤ jr j < 0.5 low correlation, no emphasis
0 ≤ jr j < 0.3 no correlation, and bold italics p-value ≥ 0.05.

HbO2 (μM) HHb (μM) tHb (μM) SO2 (%)

Female Male Female Male Female Male Female Male

Age r −0.2 0.2 −0.5 −0.3 −0.4 0.0 0.5 0.5

p-value 9 × 10−03 5 × 10−02 1 × 10−12 3 × 10−04 3 × 10−06 9 × 10−01 1 × 10−12 3 × 10−09

BMI z-score r −0.4 0.0 −0.6 −0.4 −0.5 −0.2 0.4 0.4

p-value 4 × 10−06 7 × 10−01 4 × 10−15 8 × 10−06 1 × 10−10 4 × 10−02 5 × 10−08 1 × 10−07

Head circ. r −0.2 0.1 −0.5 −0.3 −0.3 −0.1 0.4 0.5

p-value 9 × 10−03 2 × 10−01 4 × 10−10 3 × 10−05 1 × 10−05 5 × 10−01 4 × 10−09 1 × 10−09

Fig. 6 CV over five repositionings for optical parameters (top row) and hemodynamic parameters
(bottom row). Left column: female; right column: male.
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repositionings. Figure 6 shows the boxplots of the CV for optical properties and hemodynamic
parameters for all the subjects. The interquartile (25% to 75%) CV for the optical properties is in
the range 1% to 5%. The same holds for HbO2, HHb, and tHb, whereas noticeably, SO2 show a
dispersion <2%.

4 Discussion
TD NIRS measurements on a large cohort of pediatric patients were performed in a hospital.
Absolute values for baseline optical (absorption coefficient, reduced scattering coefficient, and
differential pathlength factor at 686 and 830 nm) and hemodynamic parameters (oxygenated and
deoxygenated hemoglobin content, total hemoglobin content, and cerebral oxygen saturation)
were shown as a function of age and of demographic variables. The TD NIRS device was oper-
ated by the clinicians. Each operator attended a short (10 min) training course to learn the basic
functions of the device. No adverse effects on the subjects or malfunctioning of the device were
recorded during the measurement campaign.

Subject admission to the hospital was related to different causes, such as endocrinological,
neurological, osteoarticular, gastroenterological, infectious, or respiratory. According to the
inclusion criteria, subjects were measured just before discharge from the hospital, when clinical
parameters were stable, and no treatment was ongoing. Therefore, we reasonably hypothesize no
effect of the admission cause on the TD NIRS results. Moreover, at the time of measurements, all
subjects were calm and cooperative with normal parameters.

Data reproducibility (i.e., dispersion of values during repositioning in each subject) was
good being <5% for most of the measured variables and <2% for SO2. Precision after probe
replacement is indicated as the first problem in cerebral oximetry by NIRS.48 In laboratory set-
tings, the NIRSBOX device demonstrated excellent precision (<1%) after probe replacement on
tissue phantoms for both μa and μ 0

s, whereas slightly higher values (<3% for optical properties
and hemodynamic parameters) were found for in vivo measurements of the human muscle.49

Then, the dispersion of the hemodynamic values during repositioning reported in this study
is consistent with laboratory tests and also with other recently developed CW NIRS cerebral
oximeters tested on neonates.20,50 Based on our previous experience with TD NIRS, we expect
that similar precision values could be obtained with the TD NIRS device also in neonates and
adults.

In analyzing the correlation between optical parameters and anthropometric measurements
(BMI z-score, age, and head circumference), several key observations emerge. A general trend of
higher absorption values in males compared with females was noted. In addition, this difference
appears to increase with age. DPF values demonstrated low to moderate correlations with age and
head circumference in both sexes but showed no correlation with BMI z-score. This lack of
correlation is likely due to the fact that BMI z-score is already adjusted for age and sex, indicating
that cerebral DPF values may be linked to growth indicators such as age and head circumference
but not to BMI variations.

These anthropometric differences partially extend to cerebral tissue oximetry parameters. A
low to moderate correlation was observed between SO2 and BMI z-score, age, and head circum-
ference. Interestingly, tHb was correlated with these anthropometric variables only in females,
driven primarily by HHb levels. This suggests that auxological factors, particularly in females,
may influence cerebral oxygenation metrics. These findings highlight the importance of consid-
ering both growth-related variables and BMI when interpreting reference cerebral oximetry val-
ues in pediatric populations. Specifically, older and heavier children tend to exhibit slightly
higher cerebral SO2 values, whereas younger and lighter children, particularly females, show
lower brain tHb content.

Overall, the measured optical and hemodynamic properties show values coherent with the
literature data.33–36 These data can be helpful for improving the accuracy of other techniques such
as DCS and SCOS that rely on values of the optical parameters to derive estimates of tissue
perfusion.51 Indeed, the accuracy of the measured quantities strongly depends on the physical
model used for data analysis. We (such as the majority of the published papers) have used a
simple homogeneous model; therefore, values refer to the average properties of the tissue beneath
the probe. We have shown in a previous study on adults27 that the use of a TD NIRS device with a
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homogeneous model can provide values of the absorption coefficient closer to the estimates
obtained by a two-layer model for the deep layer than to the estimates for the superficial layer.
Moreover, penetration depth in TD NIRS is independent from the source–detector distance,
whereas it relates to the photon time-of-flight.52 From TD NIRS simulations in a two-layer dif-
fusive medium,53 we have recently shown that the influence on the penetration depth of the thick-
ness of the superficial layer can be reduced by including photons with late arrival time at the
detector, such as it is normally done when fitting TD NIRS data with the photon diffusion
model.54 For the above observations, we think that the use of the same source–detector distance
for all subjects has minimal influence on the results, despite the different anatomical sizes of the
head. Therefore, as human cranial vault thickness in the pediatric population is significantly
lower than in adults,55 we are confident that the values for hemodynamic parameters (being
derived from the absorption coefficient) are more representative of the cortical tissue than the
extracerebral tissue. Nonetheless, more accurate modeling (e.g., with numerical Monte Carlo
simulations based on 3D anatomical mesh) would provide more robust estimates.32,56

The dispersion over the full cohort of the optical properties (∼20% for μa, 10% for μ 0
s, and

14% for DPF) and of the hemodynamic parameters (∼20% for HbO2, HHb, and tHb) is higher
than the dispersion in physiological parameters (∼10% for HTC and Hb), being probably
affected by the dispersion in BMI (∼30%). This suggests that individual measurements of optical
coefficients and hemodynamic contents should be preferred to the average data taken from the
literature. Interestingly, SO2 shows an overall reduced dispersion of ∼6% and that is supportive
being this the most relevant clinical parameter.

In the derivation of the hemodynamic parameters from the absorption coefficient, we have
only considered the contribution of hemoglobin, neglecting contributions from other chromo-
phores such as water and lipids. In general, the water content of normal tissues is typically <80%
(except for gray matter, placenta, and fetus).57 In the extreme case that water contributes 90% to
tissue absorption, the errors in the estimate of hemodynamic parameters are 3%, −21%, −13%,
and −9% for HHb, HbO2, tHb, and SO2, respectively. Water absorption is in fact larger at 830 nm
than at 686 nm; therefore, it will mainly affect the estimate of HbO2. Lipid absorption at short
near-infrared wavelengths is low;47 therefore, even 90% of lipids contribute minimally to light
absorption at 686 and 830 nm. In this case, in fact, the errors in the estimate of hemodynamic
parameters are −1%, −5%, −4%, and −1% for HHb, HbO2, tHb, and SO2, respectively.

5 Conclusion
This study provided baseline values for optical and hemodynamic parameters in a large cohort of
healthy pediatric subjects with good precision, providing a foundation for future investigations
into clinically relevant deviations in these parameters. Although we have observed some corre-
lations of optical and hemodynamic properties with auxological parameters, we do believe that
more data are needed to draw robust inferences.
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