We are developing an all fiber laser system optimized for providing input pulses for short pulse (1-10ps), high energy (~1kJ) glass laser systems. Fiber lasers are ideal solutions for these systems as they are highly reliable and enable long term stable operation. The design requirements for this application are very different than those commonly seen in fiber lasers. High-energy lasers often have low repetition rates (as low as one pulse every few hours), and thus high average power and efficiency are of little practical value. What is of high value is pulse energy, high signal to noise ratio (expressed as pre-pulse contrast), good beam quality, consistent output parameters and timing. Our system focuses on optimizing these
parameters. Our prototype system consists of a mode-locked fiber laser, a compressed pulse fiber amplifier, a "pulse cleaner", a chirped fiber Bragg grating, pulse selectors, a transport fiber system and a large mode area fiber amplifier. We will review the system and present theoretical and experimental studies of critical aspects, in particular the requirement for high pre-pulse contrast.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.