A systematic design method for three-mirror anastigmatic (TMA) telescopes with curved image surface is proposed in this paper. The initial structure parameters are solved analytically by the paraxial optical theory and Seidel aberration theory. On this basis, the design method is introduced. Two design examples for on-axis TMA telescope are conducted. One example is curved image surface for mitigate defocus during fine stabilization operations. The other example is curved image surface for configuration design with low misalignment sensitivities. The results demonstrate the feasibility of the design method.
Segmented mirror space telescopes have many advantages in both observation capacity and engineering feasibility. However, the alignment procedures for them are particularly complicated. Meanwhile, global alignment is one of the most important steps, in which the misalignments of each segment should be determined and corrected before image stacking is performed. Therefore, segment-level wavefront sensing is needed in this process. At present, traditional iterative phase retrieval algorithm is used to recover the segmented-level wavefront phase. However, the efficiency of this algorithm is comparatively low, especially given that there is an array of segment-level wavefront maps that need to be recovered. In addition, the magnitudes of misalignments are comparatively large in this stage and the iterative phase retrieval algorithm can be trapped in a local minimum for large-scale wavefront sensing. An analytic approach is proposed to estimate the segment-level wavefront aberrations based on the analysis of the geometrical features of one defocused point spread function (PSF) image. Meanwhile, some aberration properties of the misaligned system are also utilized. Simulations and an experiment are performed to verify the effectiveness of the proposed approach. This work can not only improve the efficiency and robustness of the global alignment of segmented mirror space telescopes, but also provide an intuitive and in-depth understanding for the mechanism of aberration calculation using PSF image features.
The aberration fields of misaligned on-axis telescopes can be described by nodal aberration theory. However, traditional nodal aberration theory cannot directly apply to pupil-offset off-axis systems. In our previous work, the net aberration fields of pupil-offset off-axis two-mirror astronomical telescopes induced by lateral misalignments were investigated by extending nodal aberration theory to include pupil-offset off-axis telescopes with a system-level pupil coordinate transformation through simulation. An experimental study on the net aberration fields of pupil-offset off-axis three-mirror anastigmatic (TMA) telescopes induced by lateral misalignments is further presented. Specifically, the astigmatism and coma aberration fields as well as their inherent relations are analytically expressed, simulated, and quantitatively validated with a real pupil-offset off-axis TMA telescope. Meanwhile, the differences between the aberration fields of misaligned off-axis and on-axis TMA telescopes are revealed and explicated. Our work not only contributes to a deep understanding of the net aberration fields of pupil-offset off-axis TMA telescopes induced by lateral misalignments but also represent an important validation for the extension of nodal aberration theory to pupil-offset off-axis telescopes.
Individual secondary optical components in a spectral splitting solar concentrator utilizing a microlens array require multiple photovoltaic (PV) cells, which leads to the complexity of system alignment and a high cost. In order to improve the integration of the PV cells and thermal management, a spectral splitting concentrator coupled to double-light guide layers has been proposed. Using one-axis tracking, we further investigate the optical performance of the concentrator combined with a cylindrical microlens array with double vertically staggered light guide layers in detail. The results show that this solar concentrator maintains a good acceptance angle of ±2 deg in the east-west direction and an acceptable angle of ±14 deg in the perpendicular direction on both low and high spectrums, achieving a concentration ratio of 10×. Finally, the capability of lateral displacement tracking has been explored for an aperture angle of ±24 deg in this concentrator.
KEYWORDS: Solar concentrators, Solar energy, Solar cells, Reflectors, Solar energy systems, Antennas, Photovoltaics, Reflectivity, Monte Carlo methods, Space operations
For the improvement of space photovoltaic cell efficiency, an astromesh deployable concentrator for space concentrating
photovoltaic (CPV) system is proposed. A deployable solar parabolic concentrator with an aperture radius of 3 m and a
concentration power of 35 kW has been designed. The astromesh deployable concentrator has a high degree of solar
concentration, lightweight, and easy deployment, which has an advantage over inflatable deployable concentrator and
rigid concentrator. We analyse the performance of the CPV system simulated by software Lighttools, and the results
indicate the CPV system can generate 270W electrical energy per kilogram, so the utilization of solar energy have been
enhanced effectively. This system can be used for the support of various spacecrafts power and space solar power
station.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.