This paper presents two decomposition schemes for polarimetric synthetic aperture radar data. The proposed schemes intend to overcome the problem of scattering ambiguity and reduce the volume scattering power in oriented urban areas. The first proposed scheme uses an empirical volume model based on the correlation coefficients of the Pauli component in the horizontal–vertical basis, whereas the second one employs a volume model defined on correlation coefficients of the Pauli components expressed in the circular basis. The correlation coefficients are calculated from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The characteristics adopted from these volume models are used to enhance the results of the decomposition schemes. The scattering powers estimated from the proposed methods give promising results compared to existing methods in the literature, particularly in urban areas since all the oriented built-up areas are well discriminated as double or odd bounce scattering. The methods are evaluated using the experimental airborne SAR sensor (E-SAR) PolInSAR L band data acquired on the Oberpfaffenhofen test site in Germany.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.