Coherent imaging with multi-beam laser is considered as a key technique in ground based imaging. In the paper, the composition of multi-beam laser coherent imaging system is demonstrated in detail, the constraints between subsystem parameters are analyzed, and the array layout of multi-beam laser imaging transmitter is proposed. In the system, the laser aiming accuracy has an important impact on the imaging. The theoretical simulation indicates that the aiming error of the emitter array should be controlled within 5%. Finally, Design equivalent aperture as Φ1.5m experimental system and Imaging target successfully, verifying the correctness and feasibility of the system, and promoting the implementation of multi-beams coherent imaging technology.
With the improvement of output power, efficiency and reliability, high power semiconductor lasers have been applied in more and more fields. In this paper, a conduction-cooled, high peak output power semiconductor laser array was studied and developed. The structure and operation parameters of G-Stack semiconductor laser array were designed and optimized using finite element method (FEM). A Quasi-continuous-wave (QCW) conduction-cooled G-Stack semiconductor laser array with a narrow spectrum width was fabricated successfully.
A new beam-shaping technique is proposed to improve the beam quality of a high-power diode laser area light source. It consists of two staggered prism arrays and a reflector array, which can cut the slow axis beam twice and rearrange the divided beams in fast axis to make the beam quality of both axes approximately equal. Furthermore, the beam transformation and compression can be carried out simultaneously, and the assembly error of this technique induced by the machining accuracy of prism’s dimensions also can be greatly decreased. By this technique, a fiber-coupled system for one three-bar laser diode stack is designed and characterized. The experimental results demonstrate that the laser beams could be transformed into the required distribution with ∼93.4% reshaped efficiency and coupled into a 400 μm/0.22 NA fiber, which are consistent with the theory.
KEYWORDS: Control systems, Field programmable gate arrays, Device simulation, Clocks, Tunable filters, Linear filtering, Binary data, Digital filtering, Crystals, Analog electronics
A new Radio Frequency (RF) source based on Direct Digital Synthesizer (DDS) is presented in this paper, to improve the performance of the Sound-light tunable filter. A DDS chip called AD9959 is used to produce RF signal. The AD9959 consists of four DDS cores that provide independent frequency, phase, and amplitude control on each channel, and FPGA is used to control AD9959, to ensure a high accurate signal source with multiple signal mode and four channels output is designed. This paper introduces the implementation of system including software and hardware. The test results show that the RF source has 0-200MHz bandwidth and resolution, stability and a series of functions fully realize the scheduled target.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.