In this paper, from two aspects of abrasion of grinding disk and stability of removal function, this paper compares the machining methods of planet movement and smooth running. On the basis of the Preston hypothesis, based on the kinematics theory, the grinding disk theory wear model of planet movement and smooth running is established, and the three-dimensional model of grinding disk wear under two kinds of motion is simulated by MATLAB. The correctness of the theoretical wear model and three-dimensional simulation wear distribution model of the grinding disk is verified by experiments. The experiment found that the wear of the grinding disc under smooth running tends to be uniform, and the wear of the grinding disc under the planet movement increases along the direction of the radius increasing. It is assumed that with the continuous abrasion of the grinding disk, the degree of fit between the grinding plate and the workpiece surface becomes worse, and the removal quantity of workpiece material is affected, which will affect the stability of the removal function. Through the removal function experiment of an hour, we find that the stability of the volume removal rate of the removal function fluctuates within 7% and the stability of the peak removal rate fluctuates within 6% under the smooth running, while the stability of the volume removal rate of the removal function fluctuates within 29% and the stability of the peak removal rate fluctuates within 12.3% under the planet movement. The results show that the wear of the smooth running is uniform and the removal function is stable. Therefore, the smooth running is more suitable for high-precision modification than planet movement.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.