ZnO possess distinctive characteristics such as low cost, wide band gap (3.36 eV) and large exciton binding energy (60meV). As the band gap lies in ultra violet (UV) region, ZnO is considered as a novel material for the fabrication of ultra violet light emitting diodes (UV-LEDs). However, ZnO being intrinsic n-type semiconductor the key challenge lies in realization of stable and reproducible p-type ZnO. In the present research dual acceptor group-V elements such as P and N are simultaneously doped in ZnO films to obtain the p-type characteristics. The deposition is made by programmable spray pyrolysis technique upon glass substrates at 697K. The optimum doping concentration of P and N were found to be 0.75 at% which exhibits hole concentration of 4.48 x 10^18 cm-3 and resistivity value of 9.6 Ω.cm. The deposited p-ZnO were found to be stable for a period over six months. Highly conducting n-type ZnO films is made by doping aluminum (3 at%) which exhibits higher electron concentration of 1.52 x 10^19 cm-3 with lower electrical resistivity of 3.51 x 10-2 Ω.cm. The structural, morphological, optical and electrical properties of the deposited n-ZnO and p-ZnO thin films are investigated. An efficient p-n homojunction has been fabricated using the optimum p-ZnO:(P,N) and n-ZnO:Al layers. The current–voltage (I–V) characteristics show typical rectifying characteristics of p-n junction with a low turn on voltage. Electroluminescence (EL) studies reveals the fabricated p-n homojunction diodes exhibits strong emission features in ultra-violet (UV) region around 378 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.