KEYWORDS: Radar, 3D image processing, 3D acquisition, Feature extraction, Detection and tracking algorithms, Expectation maximization algorithms, Antennas, 3D modeling, Synthetic aperture radar, Data modeling
We propose a Gaussian mixture model (GMM)-based approach to discriminate stationary humans from their ghosts and clutter in through-the-wall radar images. More specifically, we use a mixture of Gaussian distributions to model the image intensity histograms corresponding to target and ghost/clutter regions. The mixture parameters, namely the means, variances, and weights of the component distributions, are used as features and a K-nearest neighbor classifier is employed. The performance of the proposed method is evaluated using real-data measurements of multiple humans standing or sitting at different locations in a small room. Experimental results show that the nature of the targets and ghosts/clutter in the image allows successful application of the GMM feature-based classifier to distinguish between target and ghost/clutter regions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.