Significance: Photothrombotic stroke is an important and widely used model for ischemic stroke research. However, the significant scattering of the skull during the procedure limits the light’s ability to penetrate and focus on its target. Targeted photothrombosis uses surgery-based skull windows to obtain optical access to the brain, but it renders the brain’s environment unnatural even before a stroke is established.
Aim: To establish a targeted, controllable ischemic stroke model in mice through an intact skull.
Approach: The in vivo skull optical clearing technique provides a craniotomy-free “optical window” that allows light to penetrate. Alongside the local photodynamic effect, we have established targeted photothrombosis without skull removal, effectively controlling the degree of thrombotic occlusion by changing the light dose.
Results:Ex vivo and in vivo results demonstrated that skull optical clearing treatment significantly enhanced light’s ability to penetrate the skull and focus on its target, contributing to thrombotic occlusion. The skull optical clearing window was also used for continuous blood flow mapping, and the relationship between light dose and injury degree was evaluated over 14 days of monitoring. Per our findings, increasing the light dose was accompanied by more severe infarction, indicating that the model was easily controllable.
Conclusions: Herein, a targeted, controllable ischemic stroke model was established by combinedly running an in vivo skull optical clearing technique and a photothrombotic procedure, avoiding unnecessary damage or environmental changes to the brain caused by surgery on the skull. Our established model should offer significant value to research on ischemic stroke.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.