We report an ultrasensitive and selective plasmonic sensor for the detection of biomolecules, metal ions and small molecules. The sensor is comprised of low-power light-emitting diode, a multimode optical fiber coupler, a miniature spectrometer and multimode optical fibers with their facet coated with gold nanoparticles. It monitors the nanospectroscopic absorption changes of the plasmon resonance spectrum of the gold nanoparticles. The integration of these sensors for real time, on-line and multiplexing monitoring into microfluidics platforms is straightforward, and may be applied to many different fields, from environmental monitoring to cell biology studies.
The design and performance evaluation of an innovative, small size, compactly packaged high temperature interferometric optical sensor for harsh environments is reported. The sensor was built with a short segment of strongly coupled multi-core optical fiber (MCF) spliced to a typical single mode fiber (SMF). Matlab MathWorks and PhotonDesign simulation programs were used to design the sensor to monitor the widest temperature range possible with a commercial sensor interrogator. The SMF-MCF structure was protected by two temperature-resistant tubes: an inner ceramic tube with an internal hole that matched the MCF diameter in order keep it tightly in axial direction to avoid the effects of bending and/or vibrations that could be misinterpreted as temperature measurements, and an outer metallic tube to provide protection against impacts. The calibration of our packaged MCF sensor was carried out in a high temperature furnace at the facilities of the Aeronautical Technologies Center (CTA) and a calibrated standard K-type thermocouple was used as a reference. The calibration was performed repeatedly in the range from 200 to 950 °C and the gathered spectra were processed entirely by a custom program made in Matlab MathWorks. Our sensor responded lineally in the tested range with an average temperature sensitivity of 29.1 pm/°C and showed high robustness against vibrations. Results indicate that our MCF sensor is as accurate as the K-type thermocouple with the advantage of its appropriate passiveness for harsh environmental industrial applications.
In the last decades, the plasmonic effect of metallic nanoparticles (NPs) has been broadly exploited for label-free optical sensing. To analyze the scattered light from NPs, dark-field microscopy is the most employed technique, which typically requires complex and expensive set-ups. To overcome these limitations, here, we propose a new methodology to develop plasmonic sensors. In our approach, gold nanoparticles (AuNPs) are bonded to the end-face of convectional multimode optical fibers (MMFs). The measuring set-up is as follows: light is launched from a white light source to the end of the MMF where AuNPs are located. The guided light interacts with the AuNPs where localized surface plasmons are excited. The absorption and reflection spectra are analyzed with a miniature spectrometer. Our system is robust, portable, cost effective, and operates in the 250-1200 nm wavelength range. Moreover, the acquisition of data is in real time. Instead of monitoring the conventional shift in the plasmon resonance, our strategy relies on the plasmon resonance energy transfer (PRET) from functionalized AuNPs to metal ion complexes build on top of the AuNPs surface. Our methodology facilitates the detection of copper ions (Cu2+) in water (<10^(-9) M) by the formation of conjugated resonant complexes of N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMSen). By applying our technology, new emerging, fast, and cheaper devices with intrinsic high sensitivity can be developed for the detection of different heavy metal ions in water, which are harmful to the environment and human health.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.