KEYWORDS: Light emitting diodes, Telecommunications, Visible radiation, Signal to noise ratio, Modulation, Signal attenuation, Demodulation, Data transmission, Superposition, Transmitters
This paper proposes an innovative approach to improve the adjustable bandwidth of the LED, a pre-equalization circuit is used at the end of the transmitting system in the traditional visible light communication system. However, the preequalization circuit causes a large amount of energy loss while increasing the adjustable bandwidth of the LED. To save energy on the pre-equalization circuit, we adopt an advance approach known as, non-orthogonal multiple access (NOMA) [1] in our visible light communication system (VLC). By adopting this method, different signals can be provided by different variation of power with the help of transmitter, without increasing the adjustable bandwidth of the LED. These signals are superimpose in the power domain and after this process signals are transmitted through LED. In the receiver module, serial interference cancellation (SIC) technology is adopted to demodulate these singles. Simulation results will show that our proposed system can save a large amount of energy on the pre-equalization circuit.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.