With the development of science and technology, image sensors are more and more widely used, such as digital cameras and surveillance cameras. However, due to the physical characteristics of the photodetector, which performance is sensitive to the variation of the operating temperature. Therefore, a digital temperature sensor integrated on the chip is required to measure the operating temperature and assist in correction and compensation. Traditional scheme integrates one temperature sensor on the whole image sensor chip, which can’t reflect the temperature distribution for each pixel. It’s desirable to implement temperature measurement in pixel level for accurate correction, but existing temperature sensor occupying area of hundred μm2, which can’t be input to the pixel of image sensor. In additional, the power consumption of each temperature sensor is μW-level, which will dissipate considerable power for million temperature sensors. In this paper, a pixel-level integrated temperature sensor is proposed. The circuit is composed of only a capacitor and a conventional diode. The readout circuit is similar to that of the active pixel of image sensor, thus the ADC (Analog-to-Digital Converter) and other readout circuits and be multiplexed. The temperature sensor integrated in pixel is designed, which area is only 0.21 μm2. The simulation results show the increased power consumption for 50Hz working pixels don’t exceed 4%. It’s confirmed that the proposed pixel-level integrated temperature sensor can measure the temperature of each pixel and assisting in the accurate correction of image sensor in pixel level.
Region of Interest (ROI) readout is used in readout integrated circuit (ROIC) to improve the frame rate, and reduce the bandwidth for image sensor and infrared Focal Plane Array (IRFPA). The scheme of gray code addressing with the 64×1 minimum size of ROI is widely used. However, the circuit needs to be custom redesigned when the pixel array is changed, which reduces the scalability. The pixel scheme reduces the minimum size of ROI to 1×1. Because of its repeatable circuit design, the scheme has good scalability. But this program occupies the area of pixels, which reduces the dynamic range of image. In this paper, a ROI readout scheme using unit circuit for IRFPA is presented. The minimum size of ROI is reduced to 1×1 in the scheme without occupying the area of pixel. In order to achieve high scalability, reusable circuit named unit circuit is used to control the gating of pixels. The circuit design and simulation results are presented in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.