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1.1 Introduction

During the last decades, optics is playing an increasingly important role in acqui-
sition, processing, transmission, and archiving of information. In order to underline
the contribution of optics in the information acquisition process, let us mention
such optical modalities as microscopy, tomography, speckle imaging, spectroscopy,
metrology, velocimetry, particle manipulation, etc. Data transmission through
optical fibers and optical data storage (CD, DVD, as well as current advances of
holographic memories) make us everyday users of optical information technology.
In the area of information processing, optics also has certain advantages with
respect to electronic computing, thanks to its massive parallelism, operating with
continuous data, possibility of direct penetration into the data acquisition process,
implementation of fuzzy logic, etc.

The basis of the analog coherent optical information processing is the ability
of a thin convergent lens to perform the Fourier transform (FT). More than 40
years ago, Van der Lugt introduced an optical scheme for convolution/correlation
operation, based on a cascade of two optical systems performing the Fourier
transform with filter mask between them, initiating an era of Fourier optics.1

This simple scheme realizes the most important shift-invariant operations in
signal/image processing, such as filtering and pattern recognition. Nowadays, the
Fourier optics area has been expanded with more sophisticated signal processing
tools such as wavelets, bilinear distributions, fractional transformations, etc. Never-
theless, the paraxial optical systems (also called first-order or Gaussian ones, which
consist for example from several aligned lenses, or mirrors) remain the basic
elements for analog optical information processing.

In paraxial approximation of the scalar diffraction theory, a coherent light
propagation through such a system is described by a canonical integral transform
(CT). Thus starting from the complex field amplitude at the input plane of
the system, we have its CT at the output plane. The two-dimensional CTs
include, among others, such well-known transformations as image rotation, scaling,
fractional Fourier2 and Fresnel transforms. We can say that the CTs represent a
two-dimensional signal in different phase space domains, where the phase space
is defined by the position and momentum (spatial frequency) coordinates. The
signal manipulation in different phase space domains opens new perspectives
for information processing. Indeed, several useful applications of the first-order
optical systems for information processing have been proposed in the past decade.
In particular first-order optical systems performing fractional Fourier transform
have been used for shift-variant filtering, noise reduction, chirp localization,
encryption, etc.2–5 Others have served as mode converters, which transform the
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Hermite−Gaussian modes into helicoidal vortex Laguerre−Gaussian ones or other
structurally stable modes.6, 7 These modes, in particular, are interesting for new
types of information encoding in orbital angular momentum of beam8 or in the
geometric phase accumulated when it undergoes the cyclic transformation.9

Moreover the beam evolution in the first-order optical systems is a good model
for the analysis of two-dimensional harmonic oscillator.10

In this chapter, we briefly summarize the main properties of the two-
dimensional CTs,11 used for the description of the first-order systems, consider
their applications to traditional analog optical signal processing tasks, such as
filtering, pattern recognition, encryption, etc., and then discuss new methods
of information encoding related to the orbital angular momentum transfer and
geometric phase accumulation.

1.2 Canonical Integral Transforms: Definition and
Classification

1.2.1 Definition

The evolution of the complex field amplitude f(r) during its propagation through
a first-order optical system is described by the linear integral transform

fo(ro) =
∫ ∞

−∞
fi(ri)Kt (ri, ro) dri,

where subindices i and o stand for input and output planes of the system. The
kernel Kt (ri, ro) is parametrized by the wavelength λ and the real symplectic
ray transformation 4 × 4 matrix t that relates the position ri and direction qi of an
incoming ray to the position ro and direction qo of the outgoing ray,[

ro

qo

]
=

[
a b
c d

] [
ri

qi

]
= t

[
ri

qi

]
.

Proper normalization of the variables and the matrix parameters to some length
factor w and λ leads to the dimensionless variables: r = r/

√
λw, q =q

√
w/λ,

A = a, B = b/w, C =cw, D = d, which will be used further in this chapter,[
ro

qo

]
=

[
A B
C D

] [
ri

qi

]
= T

[
ri

qi

]
, (1.1)

where r = (x, y)t and q = (qx, qy)t. As usual, the superscript t denotes transpo-
sition. The normalized variable q can also be interpreted as spatial frequency or
ray momentum. The canonical integral transform associated with matrix T will be
represented by the operator RT

fo(ro) = RT [fi(ri)] (ro) = FT(ro) =
∫ ∞

−∞
fi(ri)KT (ri, ro) dri. (1.2)
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The CT is a linear transform: RT [f(ri) + g(ri)] (r) = RT [f(ri)] (r) +
RT [g(ri)] (r). It is additive in the sense that RT2RT1 = RT2×T1 . The inverse
transformation is parametrized by the matrix T−1, which, because T is symplectic,
is given by

T−1 =
[

Dt −Bt

−Ct At

]
. (1.3)

Any proper normalized symplectic ray transformation matrix can be decom-
posed in the modified Iwasawa form as12

T =
[
A B
C D

]
=

[
I 0

−G I

] [
S 0
0 S−1

] [
X Y
−Y X

]
= TLTSTO, (1.4)

with I throughout denoting the identity matrix, in which the first matrix represents
a lens transform described by the symmetric matrix

G = −(CAt + DBt)(AAt + BBt)−1 = Gt. (1.5)

The second matrix corresponds to a scaler described by the positive definite
symmetric matrix

S = (AAt + BBt)1/2 = St (1.6)

and the third is an orthosymplectic12, 13 (i.e., both orthogonal and symplectic)
matrix, which can be shortly represented by the unitary matrix

U = X + iY = (AAt + BBt)−1/2(A + iB). (1.7)

Note that because A = SX and B = SY, the products B−1A = Y−1X and
A−1B = X−1Y used further in different relations are defined by the orthogonal
matrix TO.

Because the ray transformation matrix T is symplectic and therefore

ABt = BAt, CDt = DCt, ADt − BCt = I,

AtC = CtA, BtD = DtB, AtD − CtB = I,
(1.8)

it has only ten free parameters. We call the transform associated with T separable
if the block matrices A, B, C, and D and G, S, X, and Y correspondingly are
diagonal. A separable transform has six degrees of freedom which reduce to three
for rotational symmetric case corresponding to scalar block matrices.

In the often-used case detB �= 0, the CT takes the form of Collins’ integral14

fo(ro) = RT [fi(ri)] (ro) = (det iB)−1/2

∫ ∞

−∞
fi(ri)

× exp
[
iπ

(
rt
iB

−1Ari − 2rt
iB

−1ro + rt
oDB−1ro

)]
dri. (1.9)

The kernel corresponds to two-dimensional generalized chirp function because
its phase is a polynomial of second degree of variables ri and ro. In particular
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11.1 Introduction: Present-Day Trends in Imaging  
Imaging has always been the primary goal of informational optics. The whole 
history of optics is, without any exaggeration, a history of creating and perfecting 
imaging devices. Starting more than 2000 years ago from ancient magnifying 
glasses, optics has been evolving with ever increasing speed from Galileo’s 
telescope and van Leeuwenhoek’s microscope, through mastering new types of 
radiations and sensors, to the modern wide variety of imaging methods and 
devices of which most significant are holography, methods of computed 
tomography, adaptive optics, synthetic aperture and coded aperture imaging, and 
digital holography. The main characteristic feature of this latest stage of the 
evolution of optics is integration of physical optics with digital computers. With 
this, informational optics is reaching its maturity. It is becoming digital and 
imaging is becoming computational. 

The following qualities make digital computational imaging an ultimate 
solution for imaging:  
• Processing versatility. Digital computers integrated into optical information 

processing and imaging systems enable them to perform not only element 
wise and integral signal transformations such as spatial Fourier analysis, 
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signal convolution, and correlation, which are characteristic for analog 
optics, but any operations needed. This eliminates the major limitation of 
optical information processing and makes optical information processing 
integrated with digital signal processing almost almighty.  

• Flexibility and adaptability. No hardware modifications are necessary to 
reprogram digital computers for solving different tasks. With the same 
hardware, one can build an arbitrary problem solver by simply selecting or 
designing an appropriate code for the computer. This feature makes digital 
computers also an ideal vehicle for processing optical signals adaptively 
since, with the help of computers, they can easily be adapted to varying 
signals, tasks, and end-user requirements. 

• Universal digital form of the data. Acquiring and processing quantitative 
information carried by optical signals and connecting optical systems to 
other informational systems and networks is most natural when data are 
handled in a digital form. In the same way that in economics money is a 
general equivalent, digital signals are the general equivalent in information 
handling. Thanks to its universal nature, the digital signal is an ideal means 
for integrating different informational systems. 

 
Present-day main trends in digital computational imaging are as follows: 
 
• Development and implementation of new digital image acquisition, 

image formation, and image display methods and devices 
• Transition from digital image processing to real-time digital video 

processing  
• Widening the front of research toward 3D imaging and 3D video 

communication 
 

Currently there is a tremendous amount of literature on digital computational 
imaging, which is impossible to comprehensively review here, and the present-
day trends can only be illustrated on some examples. In this chapter, we use an 
example of three developments, in which the present author was directly 
involved.  In Section 11.2 we describe a new family of image sensors that are 
free of diffraction limitations of conventional lens-based image sensors and base 
their image formation capability solely on numerical processing of radiation 
intensity measurements made by a set of simple radiation sensors with natural 
cosine law spatial sensitivity. In Section 11.3 we describe real-time digital video 
processing for perfecting visual quality of video streams distorted by camera 
noise and atmospheric turbulence. For the latter case, the processing not only 
produces good quality video for visual analysis, but in addition, makes use of 
atmospheric turbulence-induced image instabilities to achieve image super-
resolution beyond the limits defined by the camera sampling rate. In Section 11.4 
we present a computer-generated display hologram based 3D video 
communication paradigm.  
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11.2 Opticsless Imaging Using “Smart” Sensors 
One can treat images as data that indicate location in space and intensities of 
sources of radiation. In conventional optical imaging systems, the task of 
determining positions of sources of light is solved by lenses, and the task of 
measurement of light source intensities is solved by light-sensitive plane sensors 
such as photographic films or CCD/CMOS electronic sensor arrays. A lens 
directs light from each of the light sources to a corresponding place on the sensor 
plane, and the intensity sensor’s output signal at this place provides an estimate 
of the light source intensity. 

Lenses are wonderful processors of directional information carried by light 
rays. They work in parallel with all light sources in their field of view and with 
the speed of light. However, their high perfection has its price. Light propagation 
from the lens to the sensor’s plane is governed by the diffraction laws. They limit 
the capability of the optical imaging system to distinguish light radiated from 
different light sources and to discriminate closely spaced sources. According to 
the theory of diffraction, this capability, called imaging system resolving power, 
is determined by the ratio of the light wavelength times the lens’s focal distance 
and the dimensions of the lens. Therefore, good imaging lenses are large and 
heavy. Perfect lenses that produce low aberrations are also very costly.  In 
addition, lens-based imaging systems have limited field of view and lenses are 
not available for many practically important kinds of radiation such as, for 
instance, x-rays and radioactive radiation. This motivates search for optics-less 
imaging devices. 

Recently, H. J. Caulfield and the present author suggested a concept of a 
new family of opticsless radiation sensors1,2 that exploits the idea of combining 
the natural cosine law directional sensitivity of radiation sensors with the 
computational power of modern computers and digital processors to secure the 
sensor’s spatial selectivity required for imaging. These opticsless “smart” (OLS) 
sensors consist of an array of small elementary subsensors with the cosine law 
angular selectivity supplemented with a signal processing unit (the sensor’s 
“brain”) that processes the subsensors’ output signals to produce maximum 
likelihood (ML) estimates of spatial locations of radiation sources and their 
intensities. 

Two examples of possible designs of the OLS sensors are sketched in Fig. 
11.1. Figure 11.1(a) shows an array of elementary subsensors arranged on a 
curved surface, such as spherical one. Such an array of subsensors, together with 
its signal processing unit, is capable of localizing sources of radiation and 
measuring their intensities at any distances and in a 4π steradian solid angle. 
Shown in Fig. 11.1(b) is an array of elementary subsensors on a flat surface 
together with its signal processing unit that is capable of measuring coordinates 
and intensities of radiation sources at close distances.  
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Figure 11.1 Two examples of possible designs of opticsless “smart” radiation sensors and 
their corresponding schematic diagrams. 
 

The work principle of opticsless smart sensors can be explained using a 
simple special case of locating a certain number K of very distant radiation 
sources by an array of N elementary sensors placed on a curved surface. Consider 
a 1D model of sensor’s geometry sketched in Fig. 11.2. For an nth elementary 
sensor with the cosine law spatial selectivity placed at angle nϕ  with respect to 
the sensor’s “optical” axis, its output signal ,n ks  to a ray of light emanating from 
the kth source under angle kθ  with respect to the sensor’s “optical” axis is 
proportional to the radiation intensity  and cosine of angle kI ,n kθ  between the 
vector of electrical field of the ray and the normal to the elementary sensor 
surface. Additionally, this signal contains a random component nν  that describes 
the subsensor’s immanent noise as 
      

 ( ),cos sin ,n k n k n k n k ns A A= θ + ν = ϕ + θ + ν   (11.1)  
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27.1 Introduction

Ultracold quantum gases in optical lattices form almost ideal conditions to analyze
the physics of strongly correlated quantum phases in periodic potentials. Such
strongly correlated quantum phases are of fundamental interest in condensed matter
physics, because they lie at the heart of topical quantum materials, such as high-
Tc superconductors and quantum magnets, which pose a challenge to our basic
understanding of interacting many-body systems. Quite generally, such strongly
interacting quantum phases arise when the interaction energy between two particles
dominates over the kinetic energy of the two particles. Such a regime can either be
achieved by increasing the interaction strength between the atoms via Feshbach
resonances or by decreasing the kinetic energy, such that eventually the interaction
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energy is the largest energy scale in the system. The latter can, for example, simply
be achieved by increasing the optical lattice depth.

This chapter tries gives an introduction into the field of optical lattices and the
physics of strongly interacting quantum phases. A prominent example hereof is the
superfluid-to-Mott insulator transition,1–5 which transforms a weakly interacting
quantum gas into a strongly correlated many body system. Dominating interactions
between the particles are in fact crucial for the Mott insulator transition and also for
the realization of controlled interaction-based quantum gates,6–8 of which several
have been successfully realized experimentally.9–11

27.2 Optical Lattices

27.2.1 Optical dipole force

In the interaction of atoms with coherent light fields, two fundamental forces
arise.12, 13 The so-called Doppler force is dissipative in nature and can be used to
efficiently laser cool a gas of atoms and relies on the radiation pressure together
with spontaneous emission. The so-called dipole force, on the other hand, creates
a purely conservative potential in which the atoms can move. No cooling can be
realized with this dipole force; however, if the atoms are cold enough initially, then
they may be trapped in such a purely optical potential.14, 15

How does this dipole force arise? We may grasp the essential points through
a simple classical model in which we view the electron as harmonically bound to
the nucleus with oscillation frequency ω0. An external oscillating electric field of a
laser E with frequency ωL can now induce an oscillation of the electron resulting in
an oscillating dipole moment d of the atom. Such an oscillating dipole moment will
be in phase with the driving oscillating electric field, for frequencies much lower
than an atomic resonance frequency and 180 deg out of phase for frequencies much
larger than the atomic resonance frequency. The induced dipole moment again
interacts with the external oscillating electric field, resulting in a dipole potential
Vdip experienced by the atom15–19

Vdip = −1
2
〈dE〉, (27.1)

where 〈·〉 denotes a time average over fast oscillating terms at optical frequencies.
From Eq. (27.1) it becomes immediately clear that for a red detuning (ωL < ω0),
where d is in phase with E, the potential is attractive, whereas for a blue detuning
(ωL > ω0), where d is 180 deg out of phase with E, the potential is repulsive. By
relating the dipole moment to the polarizability α(ωL) of an atom and expressing
the electric field amplitude E0 via the intensity of the laser field I , one obtains for
the dipole potential

Vdip(r) = − 1
2ε0c

Re(α)I(r). (27.2)
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A spatially dependent intensity profile I(r) can therefore create a trapping po-
tential for neutral atoms.

For a two-level atom a more useful form of the dipole potential may be de-
rived within the rotating wave approximation, which is a reasonable approximation
provided that the detuning Δ = ωL−ω0 of the laser field ωL from an atomic tran-
sition frequency ω0 is small compared to the transitions frequency itself, Δ � ω0.
Here, one obtains15

Vdip(r) =
3πc2

2ω3
0

Γ

Δ
I(r), (27.3)

with Γ being the decay rate of the excited state. Here, a red- detuned laser beam
(ωL < ω0) leads to an attractive dipole potential and a blue-detuned laser beam
(ωL > ω0) leads to a repulsive dipole potential. By simply focusing a Gaussian
laser beam, this can be used to attract or repel atoms from an intensity maximum
in space (see Fig. 27.1).

Figure 27.1 (a) Gaussian laser beam together with corresponding trapping potential for
a red-detuned laser beam. (b) A red- detuned laser beams leads to an attractive dipole
potential, whereas a blue detuned laser beam leads to a repulsive potential (c).

For such a focused gaussian laser beam, the intensity profile I(r, z) is given by

I(r, z) =
2P

πw2(z)
e−2r2/w2(z), (27.4)

where w(z) = w0(1 + z2/z2
R) is the 1/e2 radius, depending on the z coordinate,

zR = πw2/λ is the Rayleigh length and P is the total power of the laser beam.20

Around the intensity maximum a potential depth minimum occurs for a red-detuned
laser beam, leading to an approximately harmonic potential of the form

Vdip(r, z) ≈ −V0

[
1 − 2

(
r

w0

)2

−
(

z

zR

)2
]

. (27.5)

This harmonic confinement is characterized by radial ωr and axial ωax trap-
ping frequencies ωr = (4V0/mw2

0)
1/2 and ωz = (2V0/mz2

R).




