
Chapter 1

Foundations of Scalar
Diffraction Theory
Light can be described by two very different approaches: classical electrodynam-
ics and quantum electrodynamics. In the classical treatment, electric and magnetic
fields are continuous functions of space and time, and light comprises co-oscillating
electric and magnetic wave fields. In the quantum treatment, photons are elemen-
tary particles with no mass nor charge, and light comprises one or more photons.
There is rigorous theory behind each approach, and there is experimental evidence
supporting both. Neither approach can be dismissed, which leads to the wave-
particle duality of light. Generally, classical methods are used for macroscopic
properties of light, while quantum methods are used for submicroscopic proper-
ties of light.

This book describes macroscopic properties, so it deals entirely with classi-
cal electrodynamics. When the wavelength λ of an electromagnetic wave is very
small, approaching zero, the waves travel in straight lines with no bending around
the edges of objects. That is realm of geometric optics. However, this book treats
many situations in which geometric optics are inadequate to describe observed phe-
nomena like diffraction. Therefore, the starting point is classical electrodynamics
with solutions provided by scalar diffraction theory. Geometric optics is treated
briefly in Sec. 6.5.

1.1 Basics of Classical Electrodynamics

Classical electrodynamics deals with relationships between electric fields, magnetic
fields, static charge, and moving charge (i.e., current) in space and time based on
the macroscopic properties of the materials in which the fields exist. We define
each quantity here along with some basic relationships. This introduces the reader
to the quantities in Maxwell’s equations, which describe how electrically charged
particles and objects give rise to electric and magnetic fields. Maxwell’s equations
are introduced here in their most general form, and then the discussion focuses on a
specific case and solutions for oscillating electric and magnetic fields, which light
comprises.
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1.1.1 Sources of electric and magnetic fields

Electric charge, measured in coulombs, is a fundamental property of elementary
particles and bulk materials. Classically, charge may be positive, negative, or zero.
Further, charge is quantized, specifically the smallest possible nonzero amount of
charge is the elementary charge e = 1.602 × 10−19 C. All nonzero amounts of
charge are integer multiples of e. For bulk materials, the integer may be very large
so that total charge can be treated as continuous rather than discrete. We denote the
volume density of free charge, measured in coulombs per cubic meter, by ρ (r, t),
where r is a three-dimensional spatial vector, and t is time. Moving charge density
is called free volume current density J (r, t). Volume current density is measured
in Ampères per square meter (1 A = 1 C/s). This represents the time rate at which
charge passes through a surface of unit area. Finally, charge is conserved, meaning
that the total charge of any system is constant. This is mathematically stated by the
continuity equation

∇ · J (r, t) +
∂ρ (r, t)

∂t
= 0. (1.1)

Almost every material we encounter in life is composed of many, many atoms
each with many positive and negative charges. Usually, the numbers of positive and
negative charges are equal or nearly equal so that the whole material is electrically
neutral. Still, such a material can give rise to electric or magnetic fields when the to-
tal charge and free current are zero. If the distribution of charge is not homogeneous
or if the charges are circulating in tiny current loops, fields could be present.

The separation of charge is described by the electric dipole moment, which is
the amount of separated charge times the separation distance. If a bulk material has
its charge arranged in many tiny dipoles, it is said to be electrically polarized. The
volume polarization density P (r, t) is the density of electric dipole moments per
unit volume, measured in coulombs per square meter.

Magnetization is a similar concept for moving charge. Charge circulating in a
tiny current loop is described by magnetic dipole moment, which is the circulat-
ing current times the area of the loop. When a bulk material has internal current
arranged in many tiny loops, it is said to be magnetized. The volume magnetiza-
tion density M (r, t) is the density of magnetic dipole moments per unit volume,
measured in Ampères per meter.

1.1.2 Electric and magnetic fields

When a hypothetical charge, called a test charge, passes near a bulk material that
has non-zero ρ, J, P, or M, the charge experiences a force. This interaction is char-
acterized by two vectors E and B. The electromagnetic force F on a test particle at
a given point and time is a function of these vector fields and the particle’s charge
q and velocity v. The Lorentz force law describes this interaction as

F = q (E + v × B) . (1.2)
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If this empirical statement is valid (and, of course, countless experiments over the
course of centuries have shown that it is), then two vector fields E and B are thereby
defined throughout space and time, and these are called the “electric field” and
“magnetic induction.”1

Eq. (1.2) can be examined in a little more detail to provide more intuitive defini-
tions of these fields. The electric field is the amount of force per unit of test charge
when the test charge is stationary, given by

E = lim
q→0+

F

q

∣∣∣∣
v=0

. (1.3)

This is called a push-and-pull force because the force is in either the same or op-
posite direction as the field, depending on the sign of the charge. Electric field is
measured in units of volts per meter (1 V = 1 N m/C). The magnetic field is related
to the amount of force per unit test charge given by

v × B = lim
q→0+

F − qE

q

∣∣∣∣
v 6=0

. (1.4)

The force due to a magnetic field is called deflective because it is perpendicular to
the particle’s velocity, which deflects its trajectory. Magnetic field is measured in
units of Tesla [1 T = 1 N s/(C m)].

With this understanding of the fields, they now need to be related to the sources.
This was accomplished through centuries of experimental measurements and theo-
retical and intuitive insight, resulting in

∇× E +
∂B

∂t
= 0 (1.5)

∇× B − µ0ε0
∂E

∂t
= µ0

(
J +

∂P

∂t
+ ∇× M

)
. (1.6)

These are two of Maxwell’s equations, the former being Faraday’s law and the
latter being Ampère’s law with Maxwell’s correction. In Eq. (1.6), the sources on
the right hand side include the free current J and two terms due to bound currents.
These are the polarization current ∂P/∂t and the magnetization current ∇× M.

These equations can be written in a more functionally useful form. Eq. (1.6)
can be rewritten as

∇×
(

B

µ0
− M

)
= J +

∂

∂t
(ε0E + P) . (1.7)

Making the definitions

D = ε0E + P (1.8)

H =
B

µ0
− M (1.9)
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introduces the concepts of electric displacement D and magnetic field H, which
are fields that account for the medium’s response to the applied fields. Now the
working form of these Maxwell equations becomes

∇× E = −∂B
∂t

(1.10)

∇× H = J +
∂D

∂t
. (1.11)

Further, when these are combined with conservation of charge expressed in Eq. (1.1),
this leads to

∇ · ∇ × H = ∇ · J +
∂

∂t
∇ · D (1.12)

= −∂ρ
∂t

+
∂

∂t
∇ · D (1.13)

= 0. (1.14)

Focusing on the right-hand side,

∂

∂t
(∇ · D − ρ) = 0 (1.15)

∇ · D − ρ = f (r) , (1.16)

where f (r) is an unspecified function of space but not time. Causality requires that
f (r) = 0 before the source is turned on, yielding Coulomb’s law:

∇ · D = ρ. (1.17)

Similar manipulations yield
∇ · B = 0. (1.18)

This indicates that magnetic monopole charges do not exist. Finally, Eqs. (1.10),
(1.11), (1.17), and (1.18) constitute Maxwell’s equations.1

In this model of macroscopic electrodynamics, Eqs. (1.10) and (1.11) are two
independent vector equations. With three scalar components each, these are six in-
dependent scalar equations. Unfortunately, given knowledge of the sources, there
are four unknown vector fields D, B, H, and E. Each has three scalar components
for a total of twelve unknown scalars. With so many more unknown field compo-
nents than equations, this is a poorly posed problem.

The key is to understand the medium in which the fields exist. This produces a
means of relating P to E and M to H, which amount to six more scalar equations.
For example, in simple media (linear, homogeneous, and isotropic),

P = ε0χeE (1.19)

M = χmH, (1.20)
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where χe is the electric susceptibility of the medium and χm is its magnetic sus-
ceptibility. Substituting these into Eqs. (1.8) and (1.9) yields

D = ε0E + P (1.21)

= ε0 (1 + χm)E (1.22)

= εE (1.23)

and

B = µ0 (H + M) (1.24)

= µ0 (1 + χm)H (1.25)

= µH, (1.26)

where ε = (1 + χe) ε0 is the electric permittivity and µ = (1 + χm)µ0 is the
magnetic permeability of the medium. Now this simplifies Eqs. (1.10) and (1.11)
so that

∇× E = −µ∂H
∂t

(1.27)

∇× H = J + ε
∂E

∂t
. (1.28)

Now there are still six equations but only six unknowns (as long as the free current
density J is known). Finally, with a proper understanding of the materials, this is a
well posed problem.

1.2 Simple Traveling-Wave Solutions to Maxwell’s Equations

There are many solutions to Maxwell’s equations, but there are only a few that can
be written in closed form without an integral. This section begins with transforming
Maxwell’s four equations into two uncoupled wave equations. It continues with a
few specific simple solutions such as the infinite-extent plane wave. A more general
solution is left to the next section.

1.2.1 Obtaining a wave equation

This book deals with optical wave propagation through linear, isotropic, homoge-
neous, nondispersive, dielectric media in the absence of source charges and cur-
rents. In this case, the media discussed throughout the remainder of this book have

ε = a scalar, independent of λ, r, t (1.29)

µ = µ0 (1.30)

ρ = 0 (1.31)

J = 0. (1.32)
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Taking the curl of Eq. (1.27) yields

∇× (∇× E) = −µ0
∂

∂t
(∇× H) . (1.33)

Then, substituting in Eq. (1.28) gives

∇× (∇× E) = −µ0ε
∂2

∂t2
E. (1.34)

Now, applying the vector identity ∇× (∇× E) = ∇ (∇ · E) −∇2E leads to

∇ (∇ · E) −∇2E = −µ0ε
∂2

∂t2
E. (1.35)

Finally, substituting in Eqs. (1.17) and (1.23), and keeping in mind that ε is inde-
pendent of position results in a wave differential equation:

∇2E − µ0ε
∂2

∂t2
E = 0. (1.36)

Similar manipulations beginning with the curl of Eq. (1.28) yield

∇2B − µ0ε
∂2

∂t2
B = 0. (1.37)

When the Laplacian is used on the Cartesian components of E and B, the result is
six uncoupled but identical equations of the form

(
∇2 − µ0ε

∂2

∂t2

)
U (x, y, z) = 0, (1.38)

where the scalar U (x, y, z) stands for any of the x-, y- or z- directed components
of the vector fields E and B.

At this point, we can define index of refraction

n =

√
ε

ε0
(1.39)

and the vacuum speed of light

c =
1√
µ0ε0

(1.40)

so that (
∇2 − n2

c2
∂2

∂t2

)
U (x, y, z) = 0. (1.41)

The electric and magnetic fields that compose light are traveling wave fields. There-
fore, fields with harmonic time dependence exp (−i2πνt) (where ν is the wave
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