Chapter 2
The Inverse Problem

2.1 Introduction

Given a list of effects, the problem of determining cause has intrigued philosophers,
mathematicians and engineers throughout recorded history. Problems of this type
are formally referred to as inverse problems. Inverse problems pose a particularly
difficult challenge: no solution is guaranteed to be unique or stable. The solution is
unique only if for some reason known to the observer the given list of effects can
be due to one and only one cause.

We are concerned here with the inverse problem as it relates to signal and image
restoration. In this context of linear time-invariant (LTI) systems, it is common to
use the terms inverse problem and deconvolution interchangeably. The problem
here may be stated as that of estimating the true signal given a distorted and noisy
version of the true signal.

2.2 Signal Restoration

In general, the goal of signal recovery is to find the best estimate of a signal that
has been distorted. Although the mathematics is the same, we would like to dis-
tinguish between signal restoration and signal reconstruction. In the first problem,
the research is concerned with obtaining a signal that has been distorted by a mea-
suring device whose transfer function is available. Such a problem arises in image
processing, wherein the distorting apparatus could be a lens or an image grabber.
In the second problem, the scientist is faced with the challenge of reconstructing
a signal from a set of its projections, generally corrupted by noise. This problem
arises in spectral estimation, tomography, and image compression. In the image-
compression problem, a finite subset of projections of the original signal are given,
perhaps on the orthonormal cosine basis, and the original signal is desired.
Generally, to go about the problem of signal recovery, a mathematical model
of the signal-formation system is needed. Different models are available; simple
linear models are easy to work with but do not reflect the real world. More realistic
models are complex and may be used at some additional computational cost.'
Once a model is specified, a recovery criterion must be selected. Many such
criteria exist—ME, minimum-mean-squared error (MMSE), maximum likelihood
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(ML), and maximum a posteriori (MAP) probability are but a few criteria that
have proved useful. Mathematically, the problem of signal recovery is referred to
as solving an inverse problem. Generally, an inverse problem will be characterized
as being either well posed or ill posed.”> We clarify these notions below.

Typically, signal restoration/reconstruction belongs to the class of ill-posed
problems. That is, we are often concerned with inverting a singular or nearly singu-
lar operator. Our goal is to convert a real problem into one which is well posed in
the sense that the statement of the problem gives just enough information to deter-
mine one unique solution. However, the new reformulation of the problem is often
unrealistic due to the assumptions made to choose a particular model or prior in-
formation used to tackle the problem. Many attempts have been made to deal with
such problems by inventing ad-hoc algorithms that imitate this direct mathemati-
cal inversion that one would like to carry out. We shall examine these problems in
detail.

As stated earlier, signal-restoration techniques seek the best estimate of the true
signal given the observed signal and other a priori data such as the noise variance,
noise PDF, or positivity constraints on the signal itself. The performance of the
Gerchberg—Saxton algorithm® illustrates the degree of success one can achieve in
reconstructing the original signal given only the magnitude of its Fourier transform
along with the knowledge that the signal is nonnegative.

In recent years deconvolution has become a science in itself. Extremely sophis-
ticated mathematical techniques have been applied to the solution of this problem.
Each of the resulting algorithms has its advantages and pitfalls. Experimentation
has confirmed that the success of a given algorithm is intimately related to the
characteristics of the data. Thus the need for newer and more general algorithms
remains.

The objective of this work is to present and analyze a new generalized formu-
lation for iterative signal restoration. The generalized mapping function (GMF) is
presented, and its convergence is studied both in the general formulation and for
specific cases. The van Cittert algorithm is a special case of this mapping function.
The convergence of the van Cittert algorithm has been discussed by Hill and Ioup®
and by Jansson.® We present a novel and elegant method of obtaining the criteria for
convergence of this algorithm. This also serves as a check to establish the validity
of the general formulation. Further, we demonstrate that some popular algorithms
are special cases of the GMF for most practical purposes. The convergence of these
algorithms is analyzed using the structure developed in this work. A few examples
are presented, and the direction of our future work is described.

2.3 Well-Posed and llI-Posed Problems

Many modern experimental devices for investigating physical phenomena and ob-
jects of different kinds are complicated. The results of observations are to be pro-
cessed and interpreted to extract the necessary information about the characteristics
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of the phenomenon or object to be studied.

Most often, what is measured in a physical experiment is not the desired pa-
rameter, represented here by the vector x, but instead a certain effect, y = Hx.
Therefore, the interpretation problem usually reduces to solving an algebraic equa-
tion of the form

H-x=y 2.1

for the unknown vector x of length N. Usually, H represents the apparatus function
matrix (N x N), often termed the impulse transfer function. If the measuring device
is linear, then the functional relationship between x and y is given by*

b
/ H(t,s)x(s)ds = y(t) vt € [c,d], (2.2)

where the kernel H represents the measuring device and is assumed known. The
integral equation is a Fredholm integral of the first kind.

For the following discussion, let us assume that the unknown function z(s)
belongs to a metric space’ F' and the known function y(t) to a metric space U.
Also, assume the kernel H (s, t) is continuous with respect to ¢, and that it has a
continuous partial derivative 0 H/0t. Usually, we measure changes in both spaces
with the L metric defined by Avriel:’
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in the continuous domain. For the discrete field, we have
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In the classical sense, solving for x is equivalent to finding the inverse operator
H~!, which leads to:

x =Hly. (2.5)

Obviously, Eq. (2.1) has solutions for functions y that lie in the image space HF'.
Since the right-hand member y(t) is usually obtained experimentally, only an ap-
proximation is available and the apparatus function is only known to some given
accuracy. Thus, we are faced with the challenging problem of solving for x when
only partial or approximate information is available. Hence, we are dealing with a
system:

Hx = ¥, (2.6)

*The notation used in this work is described in Appendix D.
Tmetric space: see Appendix C for definition.
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which deviates from the initial equation given in Eq. (2.1). Specifically,
|12 —H|[ <5 llg—yll<m, @7

where the norm is arbitrary and ¢, 7 are some positive numbers. The question then
arises: is the approximate system solvable? Frequently, the operator H is not in-
vertible or its inverse is not continuous (when H is everywhere continuous). Then,
the problem on hand is termed “ill posed.”

Definition 2.3.1. The problem of determining the solution x in the space F' from
the “initial data” y in the space U is said to be ill posed on the pair of metric spaces
(F,U) if at least one of the following three conditions is violated:

1. For every element y in U there exists a solution «x in the space F'.
2. The solution is unique.
3. The problem is stable in the spaces (F,U).

The property of stability is defined as follows.

Definition 2.3.2. The problem of determining the solution x = R(y) in the space
F from the initial data y in U is said to be stable on the spaces (F,U) if, for
every positive number ¢, there exists a positive number ¢ (¢) such that the inequality
pu(y1,y2) < 6(e) implies pp(z1,x2) < € where z; = R(y;) with y; in U and z;
in Ffor:=1,2.

Finally, throughout this work we will consider the case when the transformer
or operator H is homogeneous. That is, the general integral equation becomes

/_ T H(t — Da(r)dr = y(t), 2.8)

known as the Fredholm integral equation of the first kind.® Any scanning measure-
ment device leads to this form of the integral equation in a noise-free situation.

In the presence of noise, the models presented above are modified to account
for the effect of the noise. Also, we will take as a given that the distorting processes
are time (or space) invariant. With these changes the model using signal notation is
as in Egs. (2.9) (2.10) below

y (1) :/Ooh(t—T)x(T)dT—i—n(t), (2.9)

—00

which may be written more compactly as
y = hxx + n. (2.10)

In Eq. (2.10), y, z, h,andn could be continuous functions of time or their sam-
pled versions. We develop algorithms in this book under the assumption that the
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noise n may follow any distribution. On the other hand, when verifying these al-
gorithms and the applications they admit, we assume a normal distribution on the
noise. We use a minimax argument to justify this assumption. As argued in Ref.
9, this assumption provides the largest lower bound for the variance of any unbi-
ased estimator of x for a general class of linear models. Consequently, assuming
noise normality provides the worst-case scenario under which to investigate our
estimation and restoration algorithms.
The same model may be written in matrix notation as

y = H-x + n, (2.11)

where y is the sample observation vector, x is a sample vector representing the true
signal, H is the distorting function matrix, and n is the sample noise vector. The
distortion process is the standard convolution integral. In the matrix model, H is
a circulant Toeplitz matrix and the matrix product in Eq. (2.11) specifies discrete
convolution. The noise variance is assumed to be 2.

In the case of two-dimensional signals such as images, the models are the same
except that the functions are now over two variables. There is a slight modifi-
cation to the structure of H and the vectors x , y in the matrix model; H is a
block Toeplitz matrix, and the vectors x , y are lexicographically ordered.!® Lexi-
cographic ordering of image matrices is described in Appendix A.

2.4 Naive Approaches to Inverse Problems

Our interest is in estimating the process « given the measurement y. The naive ap-
proach is to find the inverse of the distorting function and ignore the effect of noise.
In the matrix case this involves computing the inverse of the distorting matrix, i.e.,

x = H'!.y. (2.12)

This approach runs into difficulties for any but the most trivial cases. The prob-
lem lies in determining the inverse matrix. There is, as we have stated before, no
guarantee that the inverse exists. In cases where the matrix is noninvertible there
is scope for preconditioning it to obtain an inverse, but such approaches may be
unstable.

Define h to be the sampled distortion function vector. Let x, y, and n be the true
sampled signal vector, measurement vector, and sampled noise vector respectively.
Then, instead of using the Toeplitz form Eq. (2.11), the degradation process can be
written as

y = hxx + n. (2.13)

In the frequency domain this is represented as

Y = H-X + N. (2.14)





