Chapter 1
Geometrical Optics

1.1 General Comments

A light wave is an electromagnetic wave, and the wavelength that optics studies
ranges from the ultraviolet (~0.2 pum) to the middle infrared (~10 wm). The
spatial scales involved in most optical applications are much larger than the
light wavelength. In these cases, a light wave can be approximately described by
a bundle of straight optical rays. The science of studying optical rays that travel
through optical media is called “geometrical optics” and is the most widely used
field of optics. If the spatial scales involved are not much larger than the light
wavelength, the wave nature of light must be considered; the science of studying
the wave nature of light is called “wave optics.”

The technique to trace an optical ray through various optical media is
called “sequential raytracing” and is the main way to study geometrical optics.
This chapter briefly introduces basic geometrical optics using a sequential
raytracing technique. (Smith' is a widely cited optical-engineering reference
book, and Hecht? is a popular optics textbook. Both are recommended here as
additional information sources.)

1.2 Snell’s Law

When an optical ray travels from one optical medium to another that has a
different refractive index, the ray is split in two by the interface of the two
media. One ray is reflected back to the first medium. Another ray is refracted
and enters the second medium, as shown in Fig. 1.1. The equation describing
such a refraction is called Snell’s law:*

ny sin(el) =Ny sin(@z), (11)

where 0; is the angle between the incident ray and the normal of the interface
of the media at the point where the ray hits, 6, is the angle between the
refracted ray and the same normal of the interface, and n; and n, are the
refractive indices of the two media, respectively.
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Figure 1.1 (a) An optical ray is incident on a planar interface of two optical media
with refractive index nq and n,, respectively, and n; < n,. (b) An optical ray is incident on a
convex interface of two media with refractive index n, and n,, respectively, and n4 < n,. The
symmetric axis of the interface is the optical axis. The incident angle varies as the ray height
h varies. For h< R, where R is the interface radius of curvature, the interface can be
considered planar.

Figure 1.1(a) illustrates a planar interface. The normal of the interface
is the normal of the point at which the ray is reflected and refracted, and it
is the optical axis. The reflection angle always equals the incident angle, which
is the “reflection law” and will be discussed in Section 1.10.1. For n; < n,,
0, > 0,, and vice versa, according to Snell’s law.

Figure 1.1(b) illustrates a curved interface. The symmetric axis of the
interface is the optical axis. The incident ray height / is the vertical distance
between the point on the interface where the ray hits and the optical axis. The
figure shows that the incident angle 6, is a function of / and the interface
radius of curvature R.

Snell’s law is the foundation of geometrical optics, which is why every
optics book mentions it.

1.3 Total Internal Reflection

Equation (1.1) shows that if n;sin(6;)/n, > 1, there is no solution for 6,
because the maximum possible value of sin(6,) is 1. Thus, no ray will be
refracted and enter the second medium. Instead, the incident ray will be
totally reflected at the interface. This phenomenon is called total internal
reflection (TIR).*

For example, if medium 1 is N-BK7 glass with an index 7; ~ 1.52 and
medium 2 is air with an index n, ~ 1.0, then condition 7;sin(8;)/n, > 1 leads to
0, >41.1°. Any incident ray with incident angle >41.1° will be totally reflected
(41.1° is the critical angle in this case). The condition for TIR to happen is
ny > n,. A different ratio of n;/n, would have a different critical angle.
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Note that when a ray is incident on an interface of two media with an
angle smaller than the TIR angle, the refracted ray will carry most of the
energy of the incident ray, and the reflected ray will carry a relatively much
smaller portion of the energy. The reflected energy can be calculated using
wave optics theory, as will be discussed in Section 2.3. In many applications,
the reflected energy is unwanted and is reduced by applying an antireflection
(AR) coating on the interface.

1.4 Paraxial Approximation

Before the invention of computers, tracing a ray using Snell’s law [Eq. (1.1)]
through several curved optical interfaces required a lot of calculation and
drawing. Efforts were taken to simplify the situation whenever possible. When
0, < 1, the calculation can be simplified by expanding the sine function in
Snell’s law into a series:
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The calculation accuracy requirement determines how many terms to keep
in Eq. (1.2).

“Paraxial approximation” means 6; < 1 so that only the first-order terms
of 01, 6, =(m1/n,)0; must be kept for a fairly accurate calculation. Paraxial
approximation is an ambiguous concept; there is no simple line to determine
whether a 0; value is small enough to qualify for paraxial approximation.
Rather, it depends on how accurate the calculation result must be. Figure 1.1(b)
shows that 1 < R leads to 8; < 1. If the terms of the third order or higher of 6;
are used, the calculation will be quite complex.

With the calculation power of modern computers, paraxial approximation
is not as important as before. However, paraxial approximation is still useful
for qualitative and manual analysis, and it is still used in much of the
literature, partially due to tradition.

5
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1.5 Lenses
1.5.1 Lens types

Lenses are the most commonly used optical component and can be separated
into two categories: positive and negative.

Any lenses with a central thickness larger than their edge thickness are
positive lenses. A positive lens can convergently refract rays that pass through
the lens, i.e., focus the rays passing through the lens.

Any lenses with a central thickness smaller than their edge thickness are
negative lenses. A negative lens can divergently refract the rays passing
through the lens.

Figure 1.2 shows several shapes of positive lenses and negative lenses. The
symmetric axis of a lens is its optical axis. The functionality of a lens can be
determined by tracing rays through the lens using Snell’s law.

1.5.2 Positive lenses

Figure 1.3 shows how raytracing is performed through an equi-convex positive
lens to analyze the lens function. The first ray usually traced is parallel to
the optical axis of the lens, traced left to right through the lens, as indicated by

(a) (b)

Figure 1.2 Three shapes of a (a) positive lens and (b) negative lens.
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Figure 1.3 Two rays traced through an equi-convex positive lens. The rays are
convergently refracted. The two cross-points of the rays and the optical axis are the two
focal points of the lens, marked F, and Fg, respectively.
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Ray 1 in Fig. 1.3. The left surface of the lens convergently refracts the ray, and
the right surface of the lens further convergently refracts the ray. As the ray
travels forward, it eventually crosses the optical axis at point Fz, which is the
right focal point of the lens. The ray is said to be focused.

The second ray traced is parallel to the optical axis of the lens and is traced
from right to left through the lens, as marked by Ray 2 in Fig. 1.3. The right
surface of the lens convergently refracts the ray, and the left surface of the lens
further convergently refracts the ray. The ray eventually crosses the optical axis
at point £, which is the left focal point of the lens. The ray is also focused.

For Ray 1, the forward extension of the incident ray and the backward
extension of the exit ray meet at point R. For Ray 2, the forward extension of
the incident ray and the backward extension of the exit ray meet at point L.
Points L. and R determine the axial locations of the two principal planes,
which are shown by the two vertical dashed lines. The cross-points of the two
principal planes and the optical axis are the two principal points, marked P
and Pg, respectively, in Fig. 1.3.

The axial distance between the left (right) principal plane and the left
(right) focal points is the focal length denoted by f7 (fz), as marked in Fig. 1.3.
f1 always equals fz. Lens thickness d is defined as the axial distance between
the two vertices of the lens surfaces.

The “back focal length” is the axial distance between the left (right) focal
point and the vertex of the lens left (right) surface, as marked by fz; and fzg,
respectively, in Fig. 1.3. fp; equals fzr only when the two surfaces of the lens
have the same shape but opposite orientations. The equi-convex lens shown
here is such a lens.

Positive lenses of any shape can focus rays, and their focal lengths are, by
definition, positive.

1.5.3 Negative lenses

Figure 1.4 shows how rays are traced through an equal-concave negative lens.
Again, the first ray traced is parallel to the optical axis of the lens and is traced
from left to right through the lens, as marked by Ray 1 in Fig. 1.4. The left
surface of the lens divergently refracts the ray, and the right surface of the lens
further divergently refracts the ray. The ray never crosses the optical axis as it
travels forward. However, a virtual ray that is the leftward extension of the
exit Ray 1 can be conceived, as shown by the dashed line in Fig. 1.4. This
virtual ray will cross the optical axis at point F;, which is the left focal point of
the lens. Such a focal point is a virtual focal point; the ray is never actually
focused.

Similarly, the second ray traced is parallel to the optical axis of the lens
and is traced from right to left through the lens, as marked by Ray 2 in
Fig. 1.4. The right-side surface of the lens divergently refracts the ray, and the
left-side surface of the lens further divergently refracts the ray. The ray
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Figure 1.4 Two rays traced through an equal-concave negative lens. The rays
are divergently refracted. The two cross-points L and R of the backward extension of
the exit rays and the optical axis are the two focal points of the lens, marked by F, and
Fr, respectively. Points L and R determine the axial positions of the two principal points
P[_ and PR.

never crosses the optical axis. The conceived virtual ray that is extended
rightward from the exit Ray 2 will cross the optical axis at point F, which is
the right-side focal point of the lens. Such a focal point is also a virtual focal
point since the ray is never focused.

The two principal points and planes of this negative lens can be found by
using the same raytracing technique as described earlier for the equi-convex
lens. The focal length and back focal length of a negative lens are measured
the same way as for the equi-convex positive lens. However, the focal length
of any negative lens is defined as negative. No negative lens will ever focus
rays.

1.5.4 Cardinal points

Any lens has three pairs of cardinal points:® a pair of principal points, a pair
of focal points, and a pair of nodal points. The principal point pair P; and Pg
and the focal point pair f; and fr were discussed earlier and marked in
Figs. 1.3 and 1.4, respectively. This subsection further discusses the optical
meaning of the principal points and planes.

In Figs. 1.3 and 1.4, if the lens is viewed from the right side, the refracted
Ray I appears to be emitted from point R, and Py is the optical position of the
lens when viewed from the right side. If the lens is viewed from the left side,
the refracted Ray 2 appears to be emitted from point L, and P; is the optical
position of the lens when viewed from that side.

Figure 1.5 shows the positions of the two principal planes for various
shapes of lenses. The principal plane positions of some lenses can be outside



Geometrical Optics 7

[}
}
1
1
[}
1
}
}
1 1
1 1
Figure 1.5 Positions of the two principal planes for various shapes of lenses.

the lenses. If the distance between the two principal points is much smaller
than the focal length, the two principal points can be considered to coincide,
and the lens is called a “thin lens.”

The raytracings shown in Figs. 1.3 and 1.4 did not consider the effects of
spherical aberrations and are therefore only approximations. The actual
positions of the two principal points and the focal points, and thus the focal
length, vary as the incident ray height changes.

Figure 1.6 shows accurate raytracing diagrams obtained using the optical
design software Zemax. The diagrams illustrate how the position of the
principal point changes as the incident ray height changes. The positions of
the principal point in the paraxial approximation (i.e., the incident ray height
approaches zero), marked by the larger dots in Fig. 1.6, are usually used. The
positions of the focal points and the value of focal length usually used are also
paraxial approximation values.

1.5.5 Nodal points

Every lens has a pair of nodal points. In most cases, including the case shown
in Fig. 1.7, the medium at the left and right side of the lens are the same, such
as air. Then the two nodal points coincide with the two principal points.
Nodal points have two unique properties:

1. A ray aimed at one of the nodal points will be refracted by the lens such
that it appears to come from the other nodal point and have the same
angle with respect to the optical axis.

2. The right (left) focal point position of a lens is not shifted when the lens
is rotated about its right (left) nodal point.
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Figure 1.6 Zemax-generated accurate raytracing diagram of the principal point positions
as a function of incident ray height h. The principal points are marked by dots. (a) and
(b) Rays are traced right and left, respectively, to determine the positions of the two principal
points for a positive lens with convex-planar surfaces. (c) and (d) Rays are traced right and
left, respectively, to determine the positions of the two principal points for a negative lens
with concave-planar surfaces.
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Figure 1.7 An equi-convex positive lens illustrates the nodal points, tangential plane and
rays, and the formation of an image. Since the object is placed outside the focal point of the
lens, the image formed is a smaller, inverse, and real image. The image is thinner than the
object because the axial magnification (see Section 1.9) is less than 1.
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Figure 1.7 illustrates the first property of the nodal points by tracing the
chief ray through the lens. (Figures 14.11 and 14.12 in Section 14.6 demonstrate
the second property of nodal points with two Zemax-generated, accurate
raytracing diagrams.)

1.6 Rays and Planes

Raytracing is a geometrical optics technique widely used in the design and
analysis of optical imaging systems. For a given object and lens, the approxi-
mate location, size, and orientation of the image formed by the lens can be
found by tracing a few rays from the object through the lens. Although raytrac-
ing is now mainly performed by computers and optical software, familiarity
with raytracing is still helpful.

To effectively trace rays, some special rays and planes must first be
defined. Each of them has a special name and meaning. Figures 1.7 and 1.8
use the simplest one-lens example to illustrate these rays and planes.

1.6.1 Tangential planes and tangential rays

For a given lens and object, two orthogonal planes and several types of rays
are defined. The tangential plane is defined by the optical axis and the object
point from which the ray originated. In Fig. 1.7, the tangential plane is the
plane of the page. A tangential plane is also called a meridional plane.

A ray that travels in the tangential plane is a tangential ray or meridional
ray. All four rays shown in Fig. 1.7 are tangential rays or meridional rays.
There are different types of tangential rays, such as chief and marginal rays.

The chief ray travels from the top of the object through the center of the
aperture stop (see Section 1.7). In Fig. 1.7, the lens aperture is the aperture stop.
A chief ray is also called a principal ray and is frequently used in raytracing.
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Figure 1.8 Sagittal plane and sagittal rays. The plane marked by the thin vertical lines is
the tangential plane. Dashed lines indicate tangential rays. The shaded plane is the sagittal
plane. All of the rays in the sagittal plane are sagittal rays, drawn with solid lines. The
intersection line of the two planes is the chief ray, denoted by the thick solid line.
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A marginal ray travels from the point where the object and the optical axis
cross the edge of the aperture stop. In Fig. 1.7, the lens edge is the aperture
stop edge. Tracing at least two tangential rays from an object point through a
lens can determine the location of the image point, as shown in the figure.

1.6.2 Sagittal planes, sagittal rays, and skew rays

There are an infinite number of planes that are perpendicular to the tangential
plane. Among these planes, only one plane contains the chief ray; such a plane
is called the sagittal plane, as shown in Fig. 1.8.

Rays traveling in the sagittal plane are sagittal rays. The chief ray is the
intersecting line of the tangential and sagittal planes. Technically, it is also a
sagittal ray, but it is usually considered as a tangential ray. Sagittal rays are
also called transverse rays. Sagittal rays are rarely used in manual raytracing
because it is difficult to conceive and draw rays perpendicular to the plane of
the page. However, modern computers and optical software can easily trace
sagittal rays.

Skew rays are those rays that neither travel in the tangential plane nor
cross the optical axis anywhere, and they are not parallel to the optical axis.
Sagittal rays, except the chief ray, are special skew rays.

1.7 Stops and Pupils
1.7.1 Definitions

Stops are important optical components in an optical system. Pupils are the
images of stops. Most image lenses have an aperture stop and a field stop. The
aperture stop sets the largest cone angle the lens imposes on the object. The field
stop sets the largest field angle the lens can see. These stops can significantly
affect the lens characteristics and should be understood. The stops can be either
lens aperture edges or some other structures.

Most image lenses also have an entrance pupil and an exit pupil. These two
pupils are the images of the aperture stop formed by the lens at the object side and
image side, respectively. Manually locating the stops and pupils and determining
their sizes can be complex, whereas computer and optical design software can easily
perform these tasks. Three examples are included here to explain the process.

1.7.2 Example 1: a schematic microscope

Figure 1.9 includes a microscope that consists of an objective and an eyepiece to
illustrate the concepts of an aperture stop, field stop, entrance pupil, and exit
pupil. In Fig. 1.9(a), the aperture of the objective restrains the cone angle of the
microscope imposing on the object and is the aperture stop. The aperture of the
eyepiece restrains the maximum allowed field angle. For example, the rays from
the solid square on the object plane are completely blocked by the edge of the
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Figure 1.9 Schematics of two microscopes: (a) The microscope consists of an objective
and an eyepiece. The aperture of the objective is the aperture stop and the entrance pupil.
The aperture of the eyepiece is the field stop. The image of the objective aperture at the
image space (right side of the microscope) is the exit pupil. (b) A similar microscope with two
additional apertures A1 and A2 in the optical path. The image of A1 at the image space is the
exit pupil.

eyepiece, and all of the rays from the solid dot on the object plane can travel
through the eyepiece. The aperture of the eyepiece is the field stop. The largest
field angle allowed by this field aperture is 6, marked in Fig. 1.9(a).

The entrance pupil of a lens is defined as the image of the aperture stop at
the object space. In Fig. 1.9(a), there is no lens at the left side of the aperture
stop. The aperture stop itself is the entrance pupil.

The exit pupil of a lens is defined as the image of the aperture stop at the
image space. In Fig. 1.9(a), the exit pupil position and size can be found by
tracing four rays rightward. The two rays from the top of the aperture stop
(objective) meet at the point marked by a dot. The two rays from the bottom
of the aperture stop meet at the point marked by another dot. These two dots
determine the exit pupil location and size, as shown by the white vertical line
linking the two dots.

Most lenses that generate an image for direct viewing have their exit pupil
outside of the lenses. If a viewer places an eyeball at the exit pupil, they only
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need to rotate their eyeball to view the entire scene; otherwise, they must move
their head to view the entire scene.

1.7.3 Example 2: a schematic microscope with two additional
apertures

For other lenses with different structures, the aperture stop and field stop
locations and sizes can be very different from those shown in Fig. 1.9(a).
Figure 1.9(b) shows a microscope similar to the one in Fig. 1.9(a) but with two
additional apertures Al and A2 in the optical path. Aperture Al, rather than
the aperture of the objective, restrains the cone angle of rays from the object.
Al is the aperture stop.

A more standard approach to determine the field stop and the pupils
traces rays from the center of the aperture stop both right and left, as shown
by the dashed line in Fig. 1.9(b). Aperture A2, rather than the aperture of the
eyepiece, restrains the largest field angle. A2 is the field stop.

By tracing the dashed-line ray left, the ray will cross the optical axis. The
cross-point is the location of the entrance pupil. The size of the ray bundle at
the entrance pupil location is the entrance pupil size, as marked by the white
line.

By tracing this dashed-line ray right, it will cross the optical axis again.
The cross-point is the location of the exit pupil. The size of the ray bundle at
the exit pupil location is the exit pupil size, as marked by the white line.

In real lenses, the entrance and exit pupils may have severe aberrations
caused by lens aberrations. The pupils can be curved. The locations of the
pupils can be far away or at infinity. The pupil sizes can be large or even
infinite. Minimizing pupil aberration is one of the optical design goals.

1.7.4 Example 3: a real double Gauss lens

Figure 1.10 presents a Zemax-generated raytracing diagram of a real double
Gauss lens to further illustrate stops, pupils, and some other lens parameters.
Two notes to make here:

1. Both the aperture stop and field stop are real physical components.
While both the entrance and exit pupils are images, either real or virtual,
they can appear anywhere or disappear (no image can be formed).

2. The positions and sizes of stops and pupils obtained here by using
manual raytracings are not accurate but are sufficient for illustration.
Any optical design software can provide much more accurate results.

Most real-image lenses use a size-adjustable iris to limit the amount of
light that passes through the lens or adjust the F-number of the lens. This iris
is placed at the aperture stop and is marked in Figs. 1.10(a—c).
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Figure 1.10 (a)-(c) Zemax-generated raytracing diagram
(d) A single-lens model for the double Gauss lens.

of a double Gauss lens.
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In Fig. 1.10(a), where a ray is traced from the center of the aperture stop
leftward, as indicated by the arrow, the ray never crosses the optical axis.
However, the backward extension of the ray marked by the dashed line
crosses the optical axis at the point marked by the black dot. This point is
the location of the entrance pupil. If a ray were traced from the top of the
aperture stop leftward, as indicated by another arrow, the ray again never
crosses the optical axis. However, the backward extension of the ray marked
by the dashed line passes through the plane where the entrance pupil is located
and determines the entrance pupil size Dg,.

In Fig. 1.10(b), where a ray is traced from the center of the aperture stop
rightward, as indicated by the arrow, the ray never crosses the optical axis.
However, the backward extension of the ray marked by the dashed line
crosses the optical axis at the point marked by the black dot. This point is the
location of the exit pupil. If a ray were traced from the top of the aperture stop
rightward, as indicated by the arrow, the ray again never crosses the optical
axis, but the backward extension of the ray marked by the dashed line passes
through the plane where the exit pupil is located and determines the exit pupil
size Dg,. It is not rare that the exit pupil is located at the left side of the
entrance pupil.

The field stop is relatively easy to find, as marked by the black dot in
Fig. 1.10(c), because this point limits the largest field angle.

The right principal plane of this double Gauss lens can be found by
extending forward the incident ray and extending backward the focused ray,
as indicated and marked by the arrows and dashed lines, respectively, in
Fig. 1.10(c). The cross-point of these two extended rays, marked by the solid
black square, determines the principal-plane location and size. The distance
between the principal plane and the image plane is the focal length f.
(The determination of the left principal plane is omitted.)

Figures 1.10 also illustrate a few other lens parameters. The back working
distance B and image space F-number B/b are marked in Fig. 1.10(b). The
angle between the two chief rays that have the largest incident angles is the
maximum field angle 6 of this lens, as marked in Fig. 10(c); the image size and
plane are also marked.

1.7.5 Single-lens model of a complex lens

This double Gauss lens and any other complex lenses can be approximately
represented by a single lens model, as shown in Fig. 1.10(d). This single lens is
located at the right principal plane location of the double Gauss lens, and its
size is the same as the entrance pupil size of the Gauss lens. The focal length,
the image plane location, and the size of this single lens are the same as those
of the double Gauss lens.

The single-lens model can provide insight into complex lenses and
significantly simplify the qualitative analysis.
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1.8 Analytical Modeling of a Lens and Rays
1.8.1 Some comments

Manually tracing rays through a lens takes a lot of effort and is rarely
performed. People either use computers and optical design software to trace
rays for accurate results or solve analytical equations for approximate results.
Analytical modeling is a simple and approximate tool that has a unique
advantage and is still widely used today for fast estimations.

A few equations about lens focal lengths and how a lens manipulates
rays have been derived for analytical modeling. This section discusses the
derivation and applications of these equations. Note that it is more
important to be able to skillfully use these equations than to derive them.
Readers who do not have enough time and/or interest in the mathematical
details can skip the derivation process without affecting their ability to work
through the book.

1.8.2 Rules of sign for lens focal length and surface radius of
curvature

Before proceeding, the rules of sign for the lens focal length and surface radius
of curvature must be clearly stated, using the lens shown in Fig. 1.11 as an
example:

1. Any positive lenses that focus rays have a positive focal length.

2. Any negative lenses that divert rays have a negative focal length.

3. When the vertex of a lens surface is to the left of the rest of the surface,
the surface radius of curvature is positive. According to this rule, Ry in
Fig. 1.11 is positive.

4. When the vertex of a lens surface is to the right of the rest of the surface,
the surface radius of curvature is negative. According to this rule, R, in
Fig. 1.11 is negative.

Surface 1 with radius Surface 2 with radius
of curvature R, of curvature R

---------- Local normal

Local normal .= ’ Air

Index n

Figure 1.11 Derivation of the paraxial focal length for a thick lens.
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1.8.3 Derivation of the paraxial focal length for a lens

The lens in Fig. 1.11 has a central thickness d, two surface radii of curvature
R and R,, respectively, and a lens material index of n. The following process
derives the paraxial focal length of this lens. Consider a ray parallel to the
optical axis of the lens incident on surface 1 of the lens with ray height 4#; and
incident angle 6;, as shown in Fig. 1.11; the paraxial condition leads to

_

=_—. 1.
0 =7 (13)

According to Snell’s law, with paraxial approximation and Eq. (1.3), the ray
refracted by surface 1 has an angle 6/, given by

(1.4)

The difference between 6, and 6 is given by Eqgs. (1.3) and (1.4):

5=0,—0]

] (1.5)
50D

The height of the refracted ray hitting surface 2 is found by using Eq. (1.5)
and the paraxial condition

hzzhl—da

d 1 (1.6)
A-5(-3)

The incident angle of this ray on surface 2 is

hy
=2 13
0 = —p-+

=M [—;2 _Rl(iRz) <1 _%> +R% <1 _%ﬂ

where the negative sign of R, is from the rule of sign stated earlier. According
to Snell’s law, the ray refracted by surface 2 has an angle 6, given by

(1.7)

0, = 1. (1.8)
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This ray crosses the optical axis with angle «, which is given with paraxial
approximation by

hy
=R

h
:n62+—2

A N N d oy ¢
o ! R2 Rle n Rl n R2 Rl n

11 (n—l)a’]‘

The last step to derive Eq. (1.9) requires some rearranging and cleaning up
of the equation. The paraxial focal length f is related to /#; and « by the
following equation, as shown in Fig. 1.11:

1.10
=(n-1) L_L_FM (1
a R] R2 I’lR]Rz '

Equation (1.10) is the final result: the widely used paraxial focal length of a
thick lens.

For any lens, once the two surface radii of curvature R; and R, the
central thickness d, and the material index n are known, the paraxial focal
length f of the lens can be easily calculated using Eq. (1.10).

When d < (RR»)™>, Eq. (1.10) reduces to the widely used thin lens
form

1 11
fz(n—l)<R—l—F2>. (1.11)

1.8.4 Derivation of the thin lens equation for a thin lens

A thin lens is a simplified concept. A thin lens has properties such that its
central thickness is much less than its focal length and the two principal planes
of the lens can be considered to coincide. The thin lens equation is an
analytical tool to analyze the effects of a lens on rays that travel through the
lens. The derivation process of the thin lens equation for one lens is explained
in this subsection.

Consider a positive lens with focal length f that focuses rays from
an object with height / and a distance o from the lens, as shown in Fig. 1.12.
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Lens

Figure 1.12 Derivation of the thin lens equation. fis the focal length of the lens, and o and i
are the object and image distances, respectively. The lens position is its center position.

An image with height /' is formed by the lens at a distance i from the lens.
Equations (1.12) and (1.13) can be written using some triangular geometrics:

h W
h NI

Equation (1.14) can be found by combining Eqgs. (1.12) and (1.13) to eliminate
h and /'

xx' = f2. (1.14)

Equation (1.14) is one form of the thin lens equation, but a more popular
form can be found by inserting x=0—f and X' =i—f into Eq. (1.14); the
result after some rearrangements is

I 1 1
5 + i (1.15)
which is the widely used thin lens equation.

The object is conventionally placed to the left of the lens, and the rays
travel rightward from the object through the lens to form an image at the right
of the lens a distance i away from the lens. In such a case, o0 > 0 by definition. By
definition, i > (0 means the image is on the right of the lens, and i < 0 means a
virtual image is formed to the left of the lens. f'is the focal length of the lens;
>0 and f < 0 mean a positive lens and a negative lens, respectively. The thin
lens equation can be used to conveniently analyze the location and size of an
image formed by a lens. The results are accurate enough for many applications.
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1.8.5 Derivation of the focal length of two thin lenses

When there are two thin lenses with focal length f; and f5, respectively, and a
small distance d < f; and d < f> between them, the focal length of the two
lenses combined can be derived by the following process.

Consider a ray emitted by an on-axis object point located a distance o
from Lens 1, as shown in Fig. 1.13. If there is no Lens 2, this ray will be
focused by Lens 1 at a point marked by the grey dot with a distance of #; from
Lens 1. For Lens 1, the thin lens equation [Eq. (1.15)] takes the form

11 1
op I fi
or
. f101
== (1.16)
: o1 —f1

For Lens 2, the grey point is a virtual object point with a distance
02:i1 —d (117)
from Lens 2. The thin lens equation for Lens 2 takes the form

1 1 1
-0y I [
where the negative sign of 0, comes from the fact that the virtual object point
is located to the right of Lens 2. Equations (1.17) and (1.18) are combined to
eliminate o0, and solve for i:

i = ibf>
far—1

+d. (1.19)

Lens 1 Lens 2

Figure 1.13 Derivation of the focal length of two thin lenses with distance d between them.
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Equations (1.16) and (1.19) are combined to illuminate i;:
if > o1f
—+d = .
Jr—i o1 —f1

In the case of 0; — o, i, becomes the right focal length f, of the two lenses.
With some rearrangements, Eq. (1.20) reduces to

(1.20)

I fi+/fo—d
—=— 1.21
JA =) (20
For d— 0, Eq. (1.21) reduces to the well-known form
1 1 1
—=—+—. (1.22)
fr i

In the case of i, — %, 01 becomes the left focal length f; of the two lenses.
With some rearrangements, Eq. (1.20) reduces to

1 fiifrd
L) (29

For d— 0, Eq. (1.23) also reduces to the well-known Eq. (1.22).

1.8.6 Application examples of the thin lens equation for a positive
lens

Five cases about a positive lens are discussed in this section with the help of
Fig. 1.14, where the focal point is marked by F, and the focal length f'is not
marked. In all of these cases, the object is on the lens optical axis, the rays are
symmetric about the optical axis, and the image point is on the optical axis.
These case studies are particularly useful for analyzing a laser beam
propagating through a lens.

» Case 1: A convergent ray bundle is incident on the lens, as shown in
Fig. 1.14(a). No point light source can emit such a ray bundle, and
therefore there is no object point. However, the forward extensions of
the incident rays cross the optical axis of the lens at a point marked by
the open square. This point is a virtual object point. In such a case, 0 <
0. The focused spot of the rays is the image point. From Eq. (1.15) it can
be found that i < f; and the rays will be focused at a point inside the
focal length, as marked by the solid square in Fig. 1.14(a).

* Case 2: 0 — », the rays are from infinity and parallel to the lens optical
axis when they reach the lens, as shown in Fig. 1.14(b). Equation (1.15)
shows that i = f. The rays are focused at the right focal point of the lens.
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Figure 1.14 lllustration of the thin lens equation [Eq. (1.15)] for a positive lens with focal
points marked by F and focal length > 0. (a) When the ray bundle is convergently incident
on the lens, the forward extension of the incident rays crosses the optical axis at a point
marked by the open square. (b) When the object point is infinitely away, the rays are parallel
to the optical axis as they reach the lens and will be focused by the lens on its focal point.
(c) When the object point is outside the focal length, the rays will be focused by the lens at a
point beyond the focal point. (d) When the object point is at a focal point, the rays will be
collimated by the lens, which means the image is at infinity. (€) When the object point is
inside the focal length, the rays passing through the lens will still be divergent. A virtual
image marked by the grey open square can be found by extending the rays backward.

* Case 3: A real object is marked by the solid square shown in Fig. 1.14(c).
The object distance is 0 > f. According to Eq. (1.15), i > f. The rays are
focused at a point beyond the right focal point, as marked by the grey
solid square.

» Case 4: A real object marked by the solid square is at the focal point,
that is o = f, and i — %, according to Eq. (1.15). The situation is shown
in Fig. 1.14(d). The image appears at infinity, which means rays are
collimated.
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» Case 5: The real object marked by the solid square is inside the focal
length, as shown in Fig. 1.14(¢), i.e., 0o < f and i < 0, according to
Eq. (1.15). The rays passing through the lens are divergent. No real image
is formed. But the backward extensions of the rays cross the optical axis
at a point marked by the grey open square; this point is the virtual image
of the object. Since the virtual image is to the left of the lens, i < 0.

1.8.7 Application examples of the thin lens equation for a negative
lens

Four cases about a negative lens are discussed in this subsection with the help
of Fig. 1.15, where the focal point is marked by F, and the focal length f'is not
marked. In all these cases, the object is on the lens optical axis, the rays are
symmetric about the optical axis, and the image point is on the optical axis.
Note that for a negative lens, the focal length f'in Eq. (1.15) is negative.

Virtual object
N <
F vV r F RS JF
o > ,E_I o n o D> pa
d A P - - A
’ ! Real image -
<3-Dio e 0D

G freveens D T Virtual object
(a) (b)
F_--1 F P’ F
> I ° E > er’ °
/\ S< - /5\ A\ <
Virtual:image Real Virtual image
e joonefs object i
0 s D> T DY
(c) (d)

Figure 1.15 lllustration of thin lens equation [Eq. (1.15)] for a negative lens with focal
points marked by F and focal length f < 0. (a) When a convergent ray bundle is incident on
the lens, the forward extensions of the incident rays cross the optical axis at a point marked
by the open square, which is a virtual object point. This virtual object point is inside the focal
length, rays are focused. (b) Similar to the situation shown in (a), but the virtual object is at
the focal point, and the rays are collimated. (c) When the object point is infinitely away, the
rays passing through the lens are divergent. The backward extensions of the rays will cross
the optical axis on the focal point and form the virtual image. (d) When the object point is not
infinitely away, the extension of the exit rays will cross the optical axis at a point inside the
focal length. This point is the virtual image.
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» Case 1: A convergent ray bundle is incident on the lens, as shown in
Fig. 1.15(a). No point light source can emit such a ray bundle, and
therefore there is no object point. However, the forward extensions of
the incident rays cross the optical axis of the lens at a point marked by the
open square. This point is a virtual object point. In such a case, 0 < 0.
For 0 <0 and f< 0, i can be either positive or negative, based on
Eq. (1.15). In Fig. 1.15(a), the virtual object point is inside the focal
length; it can be found from Eq. (1.15) that i > 0. The rays will be focused
at a point to the right of the lens marked by a solid square.

» Case 2: Similar to Case 1, but the virtual object point is at the focal
point, as shown in Fig. 1.15(b). Equation (1.15) leads to o = f'and i — <°.
The rays are collimated by the lens.

* Case 3: The object is at infinity, i.e., 0 — . Then, i =f < 0 according to
Eq. (1.15). i < 0 means that there is a virtual image at the left focal point
of the lens, as shown by the backward-extended rays and the grey open
square in Fig. 1.15(c).

» Case 4: The object is at finite 0>0. Then, 0>i>f, according to
Eq. (1.15). i < 0 means that there is a virtual image to the left of the
lens, and i > f means that |i| < |f] since f is negative; the virtual-image
point position is inside the focal plane, as shown by the backward-
extended rays and the grey open square in Fig. 1.15(d).

1.9 Lateral and Axial Magnifications of Lenses

So far, the object being considered is a point. For a real object of a certain
size, the image formed by a lens often has a size and orientation different than
those of the object because the lens has a lateral magnification M; and axial
magnification M 4. Note that all of the lens imaging drawings in this section
neglect spherical aberration to avoid unnecessary complexity.

1.9.1 Definition of lateral magnifications and axial magnifications

In Fig. 1.12, the lateral magnification M, is defined as the ratio of the image
height and object height. Based on the left side of Fig. 1.12 and some
triangular geometry, M; can be found to be

h/
h

f
7o
Equations (1.15) and (1.24) are combined to eliminate £, and M, is found to be

M, =
(1.24)

M, =—-. (1.25)
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There are two notes to make about M :

1. A negative M; means that the image has an orientation opposite to the
object, which is the case shown in Fig. 1.12. Since & and /' in Fig. 1.2
are defined as positive values, a negative sign must be placed in front of
M; in Eq. (1.24).

2. Equation (1.24) states that for a given lens, f'is fixed, and changing o
can change the value of M.

Lateral magnification is also called transverse magnification. Axial
magnification is defined by M, = Ai/Ao, which can be found by differentiat-
ing Eq. (1.15). The result is

A
Ao
I3 (1.26)

M,

Since the value of M, is always positive, M 4 is always negative, which
means that when an object is axially extended towards the lens, the
corresponding image is extended away from the lens, as shown in Fig. 1.16.
Axial magnification is also called longitudinal magnification.

1.9.2 Schematic examples of an image formed by a positive lens

Figure 1.16 is basically a re-plot of Fig. 1.7 but with the intention to illustrate
the lateral and axial magnifications. The object is placed outside the focal
length of this positive lens. The image found by some raytracings has an
orientation opposite that of the object and has a height approximately half the
object height. Thus, M; =—h'/h~ —0.5, and M, =—-M,* ~ —0.25. Figure 1.16

< Ao-> R
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k Object
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\ o \ !
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Figure 1.16 A positive lens forms a real and negative image of an object placed outside
the focal length. Here, M, = h'/lh~ —0.5 and M, =-M,;?>~—0.25. The image is thinner than
the object.
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shows that 0, > 0, while i, < i;, which explains the negative value of M 4. The
image is drawn approximately to the right proportion and is thinner than the
object because M, and M; have different values.

Figure 1.17 shows another example of a positive lens forming an image.
The object is placed inside the focal length of the lens. The image formed has
the same orientation as the object and has a height about three times larger
than the object height. This /2’ in Fig. 1.17 is defined as negative (opposite to //
in Fig. 1.16), so M; =-I'lh~3, and M,=-M,;*~ —9. Again, the image is
much thicker than the object because M, and M; have different values.

1.9.3 Schematic examples of an image formed by a negative lens

Figure 1.18 shows an example of a negative lens forming an image. The object
is placed outside the focal length of the lens. The image formed has the same
orientation as the object and has a height approximately one-third of the
object height: M; =—H/h~1/3, and M ,=-M;>~ —1/9. The image is much
thinner than the object because M4 and M; have different values.

Figure 1.19 shows another example of a negative lens forming an image.
The object is placed right at the focal point of the lens. The image formed has
the same orientation as the object and has a height approximately half the
object height. Thus, M; =-HW'lh~1/2, and M 4, = ~M;?~ —1/4. The image is
thinner than the object because M4 and M; have different values.

There are two unique phenomena about negative lenses that have a
negative focal length:

1. <0 and f—o0 < 0 (since the object is at the left of the lens o > 0)
produce an M, that is always positive, according to Eq. (1.24) and
shown in Figs. (1.18) and (1.19).

A
02 01
:~ ~w_ ">} iAo
e Image “\ \\;~§~~‘
Back extension of ~~ i i S< o

the refracted rays  ~“A

Figure 1.17 A positive lens forms a virtual and positive image of an object placed inside
the focal length. Here, M, =—h'/h~ 3 and M, =-M,;?>~—-9. The image is much thicker than
the object.
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Figure 1.18 A negative lens forms a virtual and positive image of an object placed outside
the focal length. In this setup, M, =—h'/h~1/3, and M, =-M,;?>~—1/9. The image is much
thinner than the object.

Figure 1.19 A negative lens forms a virtual and positive image of an object placed at
the focal point. Here, M, =—h'lh ~1/2, and My = —M,? ~ —1/4. The image is thinner than the
object.

2. i=fol(o—f) is always negative, and the images formed by a negative lens are
always virtual images at the left of the lens, as shown in Figs. (1.18) and (1.19).

1.9.4 Distortion of a 3D image formed by a perfect lens

Figures (1.16)—(1.19) are drawn with the assumption that the lateral and axial
magnifications are constant for a given lens and object. This is true only when
the axial size of the object Ao = 0,0, meets the condition Ao < f, so that o
and 7 can be treated as constant numbers, and the resulting lateral and
axial magnifications are constants too. However, in some cases, Ao ~ f, and
the different axial portion of the object has different o values and different
magnifications, both lateral and axial.

Figure 1.20 illustrates such a case. The front position of the object is at
0, =2f. According to Egs. (1.15), (1.25), and (1.26), i =2f, M;=—1, and
M, = —1, respectively. The image of the front part of the object is just an
inverse of the object, nothing else. The back position of the object is at
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Figure 1.20 A detailed analysis and illustration of image distortion caused by lateral and
axial magnifications varying as a function of the object position, even though the lens is
perfect.

01 = 1.5f, which leads to i; = 3f, M; = —2, and M; = —4. The back part of the
object has much larger magnification than the front part. The image formed
in such a case will have an approximate size and shape; as shown in Fig. 1.20,
the distortion is severe.

The images shown in Figs. (1.16)—(1.19) should contain severe distortions
too, but these distortions are neglected for the purpose of simplification. The
distortion discussed here is not caused by defects or aberrations of the lens.
Even a perfect lens has such a distortion.

1.10 Mirrors

Mirrors are probably the second-most-used optical components next to lenses.
Mirrors are similar and different to lenses in several aspects.

1.10.1 Reflection law

When a ray is incident on a mirror, most of the energy of the ray is reflected.
The reflection law states that

1. The incident ray, the reflected ray, and the normal of the reflection
surface at the point of incidence lie in the same plane.

2. The angle that the incident ray makes with the normal equals the angle
that the reflected ray makes to the same normal.

3. The reflected ray and the incident ray are on the opposite sides of the
normal.

The reflection that occurs at an interface of two optical media obeys the
same reflection law so long as the incident angle does not exceed the total
reflection angle (see Section 1.3).

Figure 1.21 illustrates the reflection law using three differently shaped
interfaces: planar, convex, and concave. The optical axis of an interface is its
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Figure 1.21 Reflection law using three differently shaped mirrors or optical interfaces:
(a) planar, (b) convex, and (c) concave.

axis of symmetry. For a planar interface, the normal of the point at which the
ray hits is the optical axis.

1.10.2 Mirror equation: lateral and axial magnifications

The thin lens equation [Eq. (1.15)] is also effective for mirrors and is rewritten
here for convenience:

I 1 1
==, 1.27
0 + i f (1.27)
where o is the object distance, 7 is the image distance, and f'is the mirror focal
length.
Only the rules of sign for mirrors are different from those for lenses:

1. A concave mirror is equivalent to a positive lens and has a positive focal
length.

2. A convex mirror is equivalent to a negative lens and has a negative
focal length.

3. The object is conventionally assumed at the left of the mirror with a
positive object distance o.

4. The image can be either to the left or right side of the mirror with a
positive or negative image distance i, respectively.

5. For spherical mirrors, their focal length always equals half their surface
radius of curvature.

The lateral and axial magnifications for a mirror can be defined similar to
those for a lens, only with different signs:

(1.28)
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0? (1.29)
== MLZ.

M 4 is always positive, which is an indication of the horizontal orientation of
the image relative to the object, as will be shown in Fig. 1.22. It can be proven
that for convex mirrors the image is always virtual.

1.11 Mirror Imaging

By tracing rays according to the reflection law and with Egs. (1.27)—(1.29) in
mind, the image of a mirror can be analyzed. Various rays can be traced from
an object in front of a mirror to the mirror. Only two rays from the top of the
object are usually traced. One ray is parallel to the optical axis of the mirror,
and the other ray hits the cross-point of the mirror and the optical axis. The
two rays are reflected by the mirror. Any other two rays can be selected to
trace so long as the raytracing is convenient.

. Planar mirror Convex mirror
Object Image
Eauiale Object
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Figure 1.22 The raytracing technique is used to find the image of an object formed by
three differently shaped mirrors. The solid lines represent rays. The dashed lines represent
the backward extension of the rays. The spherical aberration is neglected. (a) Planar mirror.
The image formed is positive, virtual, and the same size as the object. (b) Convex mirror.
The image formed is positive, virtual, and smaller than the object. (c) Concave mirror with the
object being placed outside the focal length. The image formed is negative, real, and smaller
than the object. (d) Concave mirror with the object being placed inside the focal length. The
image formed is positive, virtual, and larger than the object.
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1.11.1 Planar mirror imaging

Figure 1.22 shows four examples. Figure 1.22(a) shows the raytracing for a
planar mirror. Two rays are traced from the top of the object towards the
mirror. The two reflected rays do not cross, but their back extensions do. The
cross-point is the image of the top point of the object. Using the same
raytracing technique, the image of any point on the object can be found, and
thereby the whole image is found.

The image of a mirror can also be analyzed using Eqgs. (1.27)—(1.29). For a
planar mirror /' — o, Egs. (1.27)-(1.29) lead toi=-0 < 0, M; =1,and M, =1.
The image is a virtual positive image at the right of the mirror. The horizontal
orientation of the image shown here is M 4> 0.

1.11.2 Convex mirror imaging

Figure 1.22(b) shows the image formed by a convex lens using a raytracing
technique with o = —1.5/> 0 (since for a convex lens ' < 0 and o is always
positive). Two rays are drawn from the top of the object toward the mirror.
The two reflected rays do not cross. The backward extension of any ray
parallel to the optical axis should pass through the focal point of the mirror if
the spherical aberration of the mirror is neglected. The two backward
extensions of these two rays cross and determine the position of the image of
the object top. The whole image can be found using this raytracing technique
and is positive, virtual, and smaller than the object.

The image can also be found analytically. Equations (1.27)—(1.29)
lead to i=0.6/<0, the image is at the right side of the mirror,
M; =-0.6fI(-1.5/) = 0.4f> 0. The image is positive and 0.4 times the height
of the object. M4, =0.16, i.c., the image is much thinner than the object.

The image shown in Fig. 1.22(b) is approximately the right proportion,
with M; and M, assumed to be constant to simplify the analysis. Both M
and M, are a function of 0 and can be treated as constant only when Ao < f.
This situation is the same as the M; and M 4 for lenses.

1.11.3 Concave mirror imaging

Figure 1.22(c) shows the imaging of a concave mirror. The object is placed
outside the focal length of the mirror with o = 3f. The raytracing is similar to
those shown in Figs. 1.22(a) and (b), but the two reflected rays cross and
determine that the image is real and negative.

Analytically, Egs. (1.27)+(1.29) lead to i=1.5f, M;=-0.5 and
M, ,=0.25. The image is thinner than the object. The drawing in
Fig. 1.22(c) is approximately the right proportion.

Figure 1.22(d) shows the imaging of the concave mirror same as the
mirror shown in Fig. 1.22(c). The difference is now the object is placed inside
the focal length of the mirror with o =0.5f. The two reflected rays do not
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cross, but their backward extensions cross and determine that the image is
virtual and positive. From Eqgs. (1.27)-(1.29), it can be found that i =—f,
M; =2, and M,=4. The image is fatter than the object. The drawing in
Fig. 1.22(d) is also approximately the right proportion.

1.12 Optical Aberrations

In most cases, an imaging lens cannot form a near-perfect image because of the
presence of various aberrations in the lens. Aberrations can be significantly
reduced by carefully designing the lens to use more-appropriate optical elements.
However, more elements means higher cost, larger size, and heavier weight.
In reality, the performance, cost, etc., of a lens must be balanced. In this section,
several types of the most frequently seen optical aberrations are discussed.

Optical aberration is a complex subject. Optical books traditionally
study aberrations in detail with a lot of mathematics, e.g., Born and Wolf,’
which is necessary to manually locate the root of certain aberrations and
reduce it. But with the help of optical design software, such exhaustive study is
no longer necessary, particularly for those engineers and scientists who have
limited time to study optical engineering. Therefore, this book includes only
one section to briefly describe optical aberrations.

1.12.1 Spherical aberration

Three raytracing diagrams simulated by optical design software Zemax are
plotted in Fig. 1.23(a)—(c), where the object point is on the optical axis and is
infinitely away from a positive lens. The rays are parallel to the optical axis
when they reach the lens and are focused by the lens to cross the optical axis.
These rays are traced by Zemax with high accuracy, not just schematic
drawings. All of the rays in Fig. 1.23 have a 0.55-pm wavelength.

The lens shown in Fig. 1.23(a) is an equi-convex lens made of Ohara
S-FPL53 glass with an index of 1.44. Rays with different heights are focused
at different locations, and a sharp and clean focused spot does not exist. The
focused rays are said to have severe spherical aberration. The term “focal
length” usually means the focal length for paraxial rays (rays with near-zero
height), as shown in Fig. 1.23(a).

The magnitude of spherical aberration decreases as the lens surface radii of
curvature increase. If Ohara S-LAH79 glass with a large refractive index of 2.00
is used to make a lens of the same size and focal length, the surface radii are
longer, according to Eq. (1.10) and shown in Fig. 1.23(b), and the spherical
aberration is less severe than the spherical aberration shown in Fig. 1.23(a).

If the small-index Ohara S-FPL53 glass is still used to make a lens of the
same size but with a longer focal length of 50 mm, as shown in Fig. 1.23(c),
the spherical aberration is barely noticeable within the resolution of the
diagram since the lens surfaces are even more flat.
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Figure 1.23 Zemax-generated raytracing diagrams to illustrate spherical aberration for
(a)—(c) three lenses and (d) one mirror. The object point is on the optical axis and is infinitely
distant. The rays are parallel when they reach the lens or mirror. (a) The lens has a 15-mm
diameter, a 5-mm central thickness, a 20-mm focal length, and is made of Ohara S-FPL53
glass with a relatively small refractive index of 1.44. The spherical aberration is very severe.
Higher rays are focused at a point closer to the lens. (b) The lens has the same size and
focal length as those of the lens in (a) but is made of Ohara S-LAH79 glass with a relatively
large refractive index of 2.00. The lens surfaces are flatter, and the spherical aberration is
less severe. (c) The lens has a size and material the same as those of the lens in (a) except
the focal length is 50 mm. The lens surfaces are flatter, and the spherical aberration is not
apparent. (d) Spherical aberration also exits in the rays reflected by a mirror. The higher rays
are focused at a point closer to the mirror.

The following conclusions can be drawn:

1. For a given lens size, a longer focal length will result in a smaller
spherical aberration.

2. For a given lens size and focal length, a larger-refractive-index glass will
result in a smaller spherical aberration. However, larger-index glasses
usually have a smaller Abbe number and will lead to larger color
aberration (discussed in Section 1.12.4).

3. For a given glass type and focal length, a smaller lens size will result in a
smaller spherical aberration because only those rays with a smaller
height can pass through the smaller lens.
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Mirror reflection also has spherical aberrations; Fig. 1.23(d) shows an
example. The rays are traced accurately by Zemax. Higher rays are focused by
the concave spherical mirror at a point closer to the mirror, similar to lens
spherical aberration. Spherical aberration is the primary aberration that
degrades the image quality and must be reduced during the optical design
process.

1.12.2 Coma

The spherical aberration discussed previously applies to incident rays that are
parallel to the optical axis. The focused spot is on the axis. When the ray bundle
incident on the lens has an angle to the optical axis, the focused spot is not on
the axis, and the spherical aberration becomes “coma.” Figure 1.24(a) shows the
same lens as that in Fig. 1.23(a), but the ray incident angle is 20° rather than 0°.
The rays are poorly focused. The focused spot has a coma-like intensity pattern.
Again, only one wavelength of 0.55 pm is used to avoid color aberration.

Because coma is a type of spherical aberration, it exits the images
formed by a mirror as well. Figure 1.24(b) shows a mirror the same as that in
Fig. 1.23(d), but the ray incident angle is 10° instead of 0°. The focused spot
has a coma-like intensity pattern too.

1.12.3 Astigmatism

The raytracing diagram shown in Fig. 1.24 is not symmetric about the optical
axis. Only the rays in the plane of the page or the tangential plane are plotted.

(b)

Figure 1.24 (a) The lens is the same as that in Fig. 1.23(a), but the incident ray bundle has
an angle of 20° to the optical axis. (b) The mirror is the same as that in Fig. 1.23(d), but the
ray bundle has an angle of 10° to the optical axis.
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Figure 1.25 lllustration of astigmatism. When the light source is off axis in the y-z plane,
the focusing points in the x-z and y-z planes are not at the same location. The axial distance
between the two focusing points is the magnitude of astigmatism.

The behavior of the rays in the plane perpendicular to the page plane,
particularly in the sagittal plane, is unknown. Figure 1.25 illustrates the
situation with a 3D sketch.

The optical axis of the lens is the z axis, and the object point is at the y-z
plane, which is the tangential plane. The x-z plane is the sagittal plane. As
shown in Fig. 1.25, the focused spots in the tangential and sagittal planes are
not at the same point. This phenomenon is common in optics and is called
“astigmatism.” In most cases, the focusing point in the tangential plane is closer
to the lens. The axial distance between the two focusing points is the magnitude
of the astigmatism. Just like spherical aberration, astigmatism will degrade the
image quality and must be reduced during the optical design process.

1.12.4 Color aberrations

The refractive indices of optical materials are not constants; they vary as the
wavelength varies, and a longer wavelength usually produces a smaller index:
dnld\ < 0, where n is the refractive index, and N is the wavelength. This
phenomenon is called “color dispersion.” The magnitude of color dispersion is
related to a parameter called the “Abbe number” (see Section 4.1.2 for details).
A larger Abbe number means weaker color dispersion, which is usually desired.

Equation (1.10) shows that the focal length of a lens is proportional to the
inverse of the refractive index of the lens material. So, the focal length of a lens
is not a constant. A longer wavelength leads to a smaller index and longer
focal length, and the results are called “color aberrations.” There are two
types of color aberration: longitudinal color and lateral color.

The lens used in Fig. 1.23(a) is re-plotted in Fig. 1.26(a) as an example.
This lens uses Ohara S-FPL53 glass with a small refractive index of 1.44 and a
large Abbe number of 94.9. This lens has a 15-mm diameter, a 5-mm central
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Figure 1.26 Two Zemax-generated raytracing diagrams illustrate color aberrations. Two
wavelengths of 0.45 um and 0.65 pm are used to plot. (a) A 20-mm-focal-length lens made
of Ohara S-FPL53 glass focuses a ray bundle with an angle of 20° to the optical axis. The
glass has a small refractive index of 1.44 and a relatively large Abbe number of 94.7. (b) The
magnified focusing area marked by the dotted-line circle in (a). The longitudinal- and lateral-
color-aberration magnitudes are noted. (c) A 20-mm-focal-length lens made of Ohara
S-LAH79 glass focuses a ray bundle with an angle of 20° to the optical axis. The glass has a
large refractive index of 2.00 and a relatively small Abbe number of 28.3. (d) The magnified
focusing area marked by the dotted-line circle in (c). The longitudinal- and lateral-color-
aberration magnitudes are much larger than the color aberrations shown in (b) because the
smaller Abbe number results in large color aberrations.

thickness, and a 20-mm focal length. The incident rays shown in Fig. 1.26(a)
have a 20° angle to the optical axis. In Fig. 1.23(a), only one wavelength of
0.55 pm is used, whereas Fig. 1.26(a) uses a blue-color wavelength of 0.45 pm
and a red-color wavelength of 0.65 wm to show the color aberration.
Figure 1.26(b) shows the magnified view of the focusing area marked by the
dotted-line circle in Fig. 1.26(a).

Figure 1.26(b) shows that the two wavelengths are focused at different
locations. The 0.45-pm wavelength is focused at a point closer to the lens than
the 0.65-pm wavelength because of the glass dispersion. The horizontal distance
between the two focused points is ~0.35 mm; this is the “longitudinal color
aberration.” Longitudinal color, also called “axial color,” is approximately
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proportional to the focal length of the lens. The vertical distance between the
two focused points is ~0.02 mm; this is the “lateral color aberration,” which is
approximately proportional to the incident angle of the rays. Both the
longitudinal and horizontal color are approximately proportional to the inverse
of the Abbe number value. The Abbe number value of S-FPL53 glass is 94.9,
which is very large, and thus the glass has very weak color dispersion.

The lens in Fig. 1.23(b) is re-plotted in Fig. 1.26(c). It uses Ohara
S-LAH79 glass with a large refractive index of 2.00 and a small Abbe number
of 28.3. This lens has a 15-mm diameter, a 5-mm central thickness, and a
20-mm focal length. The incident rays shown in Fig. 1.26(c) have a 20° angle to
the optical axis. In Fig. 1.23(b), only one wavelength of 0.55 pm is used,
whereas in Fig. 1.26(c) a blue-color wavelength of 0.45 pm and a red-color
wavelength of 0.65 wm are used to show the color aberration. Figure 1.26(c)
shows that the two wavelengths are focused at different locations. Figure 1.26(d)
shows the magnified view of the focusing area marked by the dotted-line circle
in Fig. 1.26(c). The color aberrations in Fig. 1.26(d) is larger than those in
Fig. 1.26(b) because the Abbe number of glass S-LAH79 is much smaller than
the Abbe number of glass S-FPL53. The magnitude of the longitudinal and
lateral color aberrations is ~0.92 mm and ~0.22 mm, respectively.

1.12.5 Field curvatures

In Fig. 1.27 a Zemax-generated raytracing diagram for a single lens is used to
explain field curvature. This single lens is made of N-BK7 glass with 3-mm
central thickness, 11-mm diameter, and 15-mm focal length. The three
incident angles of rays are 0°, 10°, and 20°. The wavelength of the rays is
0.55 pm. This lens has severe coma. To avoid unnecessary complexity and to
simplify the illustration, only two meridional rays are traced for every field
angle. The real chief ray is not traced; instead, a conceived “coma-free” chief
ray is manually drawn to help explain the situation. The three focused spots
for the three field angles are marked by dark solid dots.

Every lens has a basic curved image surface, called a Petzval surface, as
shown in Fig. 1.27. For a simple thin lens, the axial distance between the
Petzval surface and the ideal flat image surface is given by 4%/(2nf), where / is
the image height, n is the refractive index of the lens material, and f'is the lens
focal length. The axial position of the focused spot moves toward the lens
as the field angle increases. The tangential image surface is the dashed curve
that links these three focused spots. Positive lenses introduce inward field
curvatures. Negative lenses introduce outward field curvatures. This pheno-
menon is called field curvature. The image surface of a single lens is more
severely curved than the Petzval surface, which is also shown here.

The raytracing and the field curvature shown in Fig. 1.27 are in the
tangential plane. In the sagittal plane, a simple positive lens will also introduce
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Figure 1.27 Zemax-generated raytracing diagram for a single lens shows a severe,
inwardly curved image surface in the tangential plane. The sagittal image surface, which is
perpendicular to the book page, is less curved than the tangential image surface but more
curved than the Petzval surface.

an inward field curvature with a magnitude smaller than the field curvature
magnitude in the tangential plane, as illustrated in Fig. 1.27. The axial
distance between the tangential and sagittal image surfaces is about twice the
axial distance between the sagittal image surface and the Petzval surface, as
indicated by the two thick grey lines in Fig. 1.27.

The axial distance between the two focused points on the tangential and
sagittal image surfaces along the same chief ray is the astigmatism, as marked
in Fig. 1.27. The magnitude of astigmatism is about 4%/, a parameter that is
special in determining the magnitude of field curvatures.

For a multi-element lens, the field curves in both tangential and sagittal
planes can have complex profiles. Since all of the sensors used to sense the
image produced by a lens are planar, field curvature will cause defocusing and
reduce the image sharpness, particularly at large field angles. Field curvature
can often be mostly corrected by combining several positive and negative lens
elements with properly selected surface curvatures and glasses or/and the use
of some aspheric lenses. A well-designed lens should have a nearly flat image
plane in both tangential and sagittal planes.
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1.12.6 Wavefront errors and optical path difference

All optical aberrations are some type of wavefront error. For example, when a
lens focuses rays to a point, the ideal wavefront is a convergent sphere. The
center of the sphere is the focal point. All rays will travel along the radii of
the wavefront sphere and be focused at the center. However, because of the
presence of various types of aberrations, the real wavefront deviates from the
ideal sphere, and the rays will not be focused at the same spot. If a real
wavefront is “toroidal,” there is astigmatism.

The concept of optical path difference (OPD) quantifies the deviation of a
real wavefront from a spherical reference wavefront. Two types of OPD are
frequently used: peak-to-valley OPDpy and root-mean-square OPDgjys.
Figure 1.28 shows two examples. OPDp) is the largest OPD between the
wavefront and a reference sphere over the entire wavefront. OPDpgys is
calculated by the following equation using the data of a series of sampling
points on the wavefront and the reference sphere:

m OPD}
OPDgys = \/%, (1.30)

where m is the number of sampling points used to calculate the OPDgys.
There is no rule about how many sampling points should be used. Common
sense of mathematics applies here.

OPDg s contains more complete information about the wavefront and is
widely used to evaluate the quality of a wavefront. For example, the wavefront
error shown in Fig. 1.28(a) is more severe than the wavefront error shown in
Fig. 1.28(b), where the two OPDpy are the same but the OPDg,ss shown in
Fig. 1.28(a) is larger. Since a real wavefront can have various complex shapes,

Reference S Reference
sphere """ : .’-'.>I / sphere "

i Real wavefront

1
I i Real wavefront
M :
'
1
\

Figure 1.28 The solid curves depict two real wavefronts. The dashed curves are the
two reference spheres selected to compare with the real wavefront. The distance between
the real wavefront and the reference sphere is the OPD. The dotted curves define the peak-
tO'Va”ey OPDP\/.
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there is no simple relation between the OPDpy and OPDpg,ss because the
wavefront can have various shapes. For a mixture of low-order aberrations,
OPDpy~4.50PDg,ys. 1t is usually assumed that OPDpy =~ 5SOPDgyys.
1.12.7 How to read an OPD diagram

Optical software can plot the OPD diagram for a lens to evaluate the lens
quality. Figure 1.29 shows a Zemax-generated OPD diagram for the double
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Figure 1.29 Zemax-generated OPD diagram at the image plane for the double Gauss lens
shown on Fig. 1.10 for (a) a field angle of 10° in the sagittal direction (perpendicular to the
page) and (b) 10° in the tangential direction (page plane), and RGB three colors. In (a) and
(b), the vertical axis is the OPD with a unit of “wave” (the wavelength of He-Ne laser).
(a) OPDvs. P, for P,=-1to P,=1. P, is marked in Fig. 1.29(c). The R and G colors have an
OPD up to 2 waves. The B color has the largest OPD up to 5 waves. (b) OPD vs. P, for
P, =-11o P, =1, which is in the sagittal plane perpendicular to the page and is not marked in
Fig. 1.29(c). The OPD is symmetric about P, =0 and is smaller than the OPD shown in (a).
(c) Re-plot of the raytracing diagram for the double Gauss lens to illustrate P,. The y
direction is along the page plane and is the tangential direction. The 10° field and the P, = —
1, 0, and 1 are marked.



40 Chapter 1

Gauss lens shown in Fig. 1.10, which is re-plotted here in Fig. 1.29(c)
for convenience.

For any given field angle, P, = 0 is the chief ray, P, = —1 is the low ray,
and P, =1 1s the high ray, as marked in Fig. 1.29(c) for the field angle of 10°.
All of the rays for any given field angle in the tangential plane are in the range
of -1<P, <.

The OPD in the tangential direction is shown in Fig. 1.29(a) and is larger
than the OPD in the sagittal direction shown in Fig. 1.29(b). This phenomenon
is commonly seen and can also be seen in the CTF diagram in Fig. 1.33.

OPD is closely related to image quality. The Rayleigh criterion states
that the OPDpy < 0.25 wave or OPDg,s < 0.07 wave can be translated to
diffraction-limited quality.

1.13 Evaluation of Image Quality

Many lenses are used to generate an image of an object on a sensor for display.
The image quality evaluation is an important subject. Image resolution and
image distortion are the two most important parameters used to describe the
image quality.

Several criteria are used to describe image resolution. Among these, the
contrast transfer function is the most commonly used. The Rayleigh criterion
(another criterion from the same Rayleigh mentioned earlier) is also
frequently used. These two criteria are related.

1.13.1 Image resolution: Rayleigh criterion

Image resolution involves the diffraction of optical waves, which will be
discussed later in Chapter 2. The results are presented here in advance.

The image of an infinitely small object point formed by a perfect lens has a
certain size because of diffraction. The intensity profile of the image spot
contains a central lobe and several side lobes with gradually decreasing
intensity, as shown in Fig. 2.12(a). The spatial resolution limit of this lens is
defined by Rayleigh as when the maximum of one image spot falls on the first
minimum of the next image spot, as shown by the solid curves in Fig. 1.30(a).
In such a case, the intensity profile of the two-image-spot combination has a
central dip of ~74% of the maximum intensity of the two-image-spot
combination, as shown by the dashed curve in Fig. 1.30(a), and the two image
spots are said to be just resolvable.

The distance R between the two spots is the resolution limit of the lens.
Any two image spots with a distance between them smaller than R is not
resolvable (see Fig. 1.30(b)). Any two image spots with a distance between
them larger than R is resolvable (see Fig. 1.30(c)).

This criterion is the Rayleigh criterion and is widely used to define the
resolution limit of lenses. The image spots can either be diffraction limited
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Figure 1.30 Rayleigh criterion of resolvable images. The solid curves are the intensity
profiles of image spots. The dashed curves are the intensity profile of the two-image-spot
combination. (a) The two image spots are just resolvable according to the widely used
Rayleigh criterion. Distance R between the centers of the two spots is the image resolution
of the lens used to generate these image spots. (b) The two image spots are too close to be
resolvable. (c) The two image spots are clearly resolvable.

(aberration free) for a very-high-quality lens or have severe aberration for a
low-quality lens. A lens that can form smaller focused spots has higher image
resolution.

1.13.2 US Air Force resolution test chart

The US Air Force (USAF) resolution test chart, as shown in Fig. 1.31, is
widely used as an object to measure the resolution of an image lens. The lens
under test generates an image of the chart. The resolution of the lens can be
found by comparing the chart and the image of the chart.

A resolution test chart contains many black-and-white bars. All of these
bars are divided into several groups. Each group contains several bar elements
with different widths or spatial frequencies. The chart is designed so that the
spatial frequency R of a bar can be calculated by

R — 2gr0up+a1£mtglt—] , (1 .3 1)

where group and element are the group number and element number,
respectively, as marked in Fig. 1.31.
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Figure 1.31 A US Air Force resolution test chart consists of many groups of black-
and-white bars with different widths or spatial frequencies. The three dotted-line frames have
been added by the author to mark the three groups of —2, —1, and 0, respectively, and
the notes “Group number=—-2", “Element number=1, 2, 3, 4, 5, 6", and “Group
number = —1” have been added for clarification.

The modulation depth of the chart is defined by (w—b)/(w + b) = 1, where
w=1 and b =0 are the normalized optical intensities of the black-and-white
bars, respectively. Detailed information about the USAF resolution test chart
can be found in the literature.®

1.13.3 Image resolution: contrast transfer function

The spatial resolution of an imaging lens can be quantized by the contrast
transfer function (CTF) or modulation transfer function (MTF). These two
quantities are related, and the CTF is the more commonly used of the two.
The CTF of an imaging lens can be measured using a USAF resolution
test chart or any similar chart, such as a Siemens star chart. The value of the
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CTF is defined as the modulation depth of the image of a target with a
modulation depth of 1. The mathematical form of the CTF is

Iw _I/)

CTF = ——
1w+1b7

(1.32)

where [, and [, are the intensities of the images of the black/white bar,
respectively, and the intensities of the target are normalized to b=0 and w=1.

Because of the diffraction, the image of a black/white vertical edge formed
by a perfect lens is a gradient grey area, which is called the “line spread
function.” For an imperfect lens, the presence of various types of aberrations
increases the width of this gradient grey area, as shown in Fig. 1.32(b), where
the grey area width 2s is exaggerated. If the black-and-white bar width P is
larger than s, the portions of the image outside the grey area still have

Target Black/white bar array target

Black b =0 White w =1

i< Bar width B>
Image i< Grey area width 2>

(b)

Figure 1.32 lllustration the relation between black-and-white targets and their images.
(a) A black-and-white edge target with normalized intensity of b=0 and w=1. (b) Image of
the black-and-white edge target formed by a lens is a gradient grey area with width 2s
determined by the diffraction and aberrations of the lens. The curve is the intensity level of
the grey area. Inside the grey area, the modulation depth of the image is CTF = (I,,—I,)/
(lw+ 1p) < 1. Outside the grey area, the modulation depth of the image is CTF = (w—b)/
(w+b)=1. (c) A black-and-white bar array target with spatial period P and normalized
intensities of b=0 and w=1. (d) Image of the black-and-white bar array. When the bar
width is < s, the modulation depth of the image is always < 1. As the bar width decreases,
the image modulation depth decreases. When the bar width is much smaller than s, the
modulation depth of the image approaches zero.
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normalized intensities of 1 and 0, respectively, as shown in Fig. 1.32(b), and
the image CTF is still 1.

If the black-and-white bar width P/2 is smaller than s, the image only
consists of periodic grey areas, as shown in Fig. 1.32(d). The dark portion of
the image is no longer black and has a normalized intensity 7, < 1. The light
portion of the image is no longer white and has a normalized intensity 7,, > 0.
The image CTFis < 1, and the CTF value decreases as the ratio P/s decreases.
The lens spatial resolution limit is widely defined as CTF=0.3. The test bar
width of the corresponding image bar width for CTF = 0.3 is the resolution
limit of the lens under test. For CTF=0.3, higher-quality lenses have a
smaller s value and can resolve a smaller P (narrower test bar). The CTF will
eventually decrease to zero for any lenses with a very small PJs.

When a test chart is used to measure the resolution limit of an imaging
lens, the distance between the test chart and the lens must be specified because
the same bars will look smaller if the distance increases. More frequently,
people use the image bar width instead of the test chart bar width to specify
the resolution limit of a lens. There is a one-to-one relation between the widths
of the test bar and the image for a given lens focal length and the distance
between the test chart and the lens.

The widths of the test chart bar and image bar are often expressed in
terms of cycle/mm or line pair/mm. One cycle or one line pair means one
black-and-white bar pair.

1.13.4 How to read a CTF diagram

Figure 1.33 shows a CTF diagram produced by Zemax for the double Gauss
lens shown in Figs. 1.10 and 1.29(c):

1. The vertical axis “Square Wave MTF” means the CTF.

2. The horizontal axis “Spatial frequency in cycles per mm” is the
image bar width. For example, 100 cyclessmm means that there are
100 black-and-white bar pairs in one millimeter in the image, and each
bar has a 5-pm width.

3. For a given lens, the CTF varies as the angle of incident ray varies. A
larger incident ray angle usually results in a smaller CTF. The CTFs for
0°, 10°, and 14° are plotted in Fig. 1.33.

4. For any angles of ray incidence, the CTF in the tangential and sagittal
directions are represented by the dotted and solid curves in Fig. 1.33,
respectively, and are often different, which means the lens has astig-
matism. The black-and-white bars shown at the left of Fig. 1.33 illustrate
this phenomenon. For a 0° incident angle, the rays are symmetric about
the optical axis. The concepts of tangential and sagittal are invalid.

5. The top black curve in the diagram is the “diffraction-limited” CTF
curve that is the theoretical best possible CTF curve that can be
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Figure 1.33 A CTF diagram generated by Zemax for the double Gauss lens shown in
Figs. 1.10 and 1.29. The CTF value is a function of bar spatial frequency. The CTF curves
for three field angles of 0°, 10°, and 14° are plotted. The CTF in the tangential and sagittal
directions are plotted by dotted and solid curves, respectively; these two curves are usually
different. At field center (0°), the CTFs in the tangential and sagittal directions coincide. The
spatial resolution limit (CTF > 0.3) is ~47 cycle/mm in the tangential direction for a 10° field,
as marked.

obtained only by a perfect lens of the same F-number. Different lenses
have different diffraction-limited CTF curves, which are always smaller
than 1.

6. The values of all CTF curves start as 1 at 0 cycles/mm, which means
that the black-and-white bar width is infinitely large and decreases as
the spatial frequency increases.

7. All CTF curves at a given spatial frequency are much smaller than the
diffraction-limited CTF curve. This phenomenon indicates that this
lens has large aberrations.

8. Spatial frequency of ~47 cycle/mm is about the resolution limit of this
lens. Below this spatial frequency, all CTF curves >0.3. 47 cycle/mm
translates to a ~10-pm bar width in the image.

9. The CTF for a 10° field in the tangential direction is much smaller than
the CTF in the sagittal direction. This phenomenon can also be seen in
the OPD diagram in Fig. 1.29.

1.13.5 Image resolution: modulation transfer function

Traditionally, a test chart with a sinusoidal periodic intensity pattern is also
used. The normalized intensity of such a chart gradually varies between 0
and 1. The image modulation depth of such a test chart is the MTF. Because
the sinusoidal intensity pattern does not have a sharp black-and-white edge,
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the value of the MTF is always smaller than the value of the CTF for the
same spatial frequency and the same lens. The equations linking the CTF to
MTF are’

MTF(v) :; [CTF(V) + CTI;@V) - CTZ(SV) LT 1;(7") ] (1.33)
or
CTF(v) = % [MTF(V) - MT§(3V) + MTI;(SV) - MTI;(M .. ] . (1.34)

where v is the spatial frequency. Nowadays, the USAF resolution test chart is
the most widely used test chart, and therefore the CTF is more widely used
than the MTF.

All of the optical aberrations described in Section 1.12 can reduce the
CTF or MTF of a lens. Increasing either value requires an overall improve-
ment of the lens and can be achieved by carefully designing the lens using
more appropriate optical elements.

1.13.6 Effect of sensor pixel size: Nyquist sampling theorem

The image formed by a lens is often detected by a 2D sensor array and sent to
a display device. The sensor pixel size will have an impact on the resolution of
the image sent to the display device.

The Nyquist sampling theorem'® states that when sampling a periodic
signal, at least two samplings per period are needed to recover the signal. In
the case here, one period of signal consists of one black-and-white bar pair,
and one sampling means one pixel. The resolution limit of the lens determines
the smallest image of the bars that the lens can produce. When the pixel size of
the sensor is larger than the resolution limit of the lens, the detector cannot
fully resolve the image generated by the lens, so the quality of the lens is
partially wasted, and vice versa. For example, to fully utilize the resolution of
the image in Fig. 1.33, the sensor pixel must be smaller than 10 pm.

In the visible range, CCD arrays are widely used as the sensor. The pixel
size of CCD arrays can be as small as a couple of microns now. Most lenses in
the visible range have an image resolution lower than the sensor resolution
and limit the resolution of the lens/sensor combination.

1.13.7 Image distortion

Any optical image is more or less distorted. The image distortion of a lens can
be analyzed by imaging a grid target. There are two typical types of image
distortion: barrel distortion and pincushion distortion, as shown in Fig. 1.34.

Barrel distortion shrinks the image, whereas pincushion distortion
stretches the image. Some optical lenses produce images with a mixture of
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Figure 1.34 Two typical types of image distortion: barrel and pincushion. The thin line grid
is the image of a grid target without distortion plotted here for comparison. The thick curved
grids are Zemax-generated distorted images of the grid target generated by a lens under
test. The very thick and short grey lines at the top right and left corners mark the absolute
distortion value d. The relative distortion d/D is what is really sought, where D is the half-
diagonal of the grid. Another way to define the relative distortion is d'/D’, where d' is shown in
the magnified view. Distortion d’/D’ ignores the image size change caused by distortion.

these two types of distortion. Figure 1.34 depicts pure barrel and pincushion
distortions. The magnitude of the relative image distortion at a certain
location in the image is the distorted amount divided by the radial position of
this location. The maximum magnitude of the relative image distortion often
appears at the image corner and is marked by the two thick, short grey lines at
the top corner in Fig. 1.34. The maximum relative distortion is the length of
these thick, short grey lines divided by the half-diagonal of the grid image.
The maximum relative distortions in both images in Fig. 1.34 are ~8%.

The image size compression or stretching caused by distortion can often
be compensated by intentionally designing a lens with a “too large” or “too
small” image, respectively. Lens users are annoyed by the curved images of
straight lines. Based on this argument, the image compression or stretching
can be excluded from the distortion, and the maximum relative distortion can
be defined by d'/D’, as shown in Fig. 1.34.
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Image distortion can be minimized by carefully designing the lens using
more appropriate optical elements, which is an issue when balancing the
performance and cost. For a camera lens, image distortion with a couple of
percent magnitude is acceptable. For an inspection lens, the required distortion
can be below 0.1%.

1.14 lllumination Optics versus Imaging Optics

Thus far, only imaging optics has been discussed, i.e., where an image of an
object is formed. Every image point has an exclusive one-to-one relation with
an object point, as illustrated in Fig. 1.35(a).

Illumination optics is different from imaging optics and is also a part of
geometrical optics. In illumination applications, certain illumination intensity
patterns (usually a uniform intensity pattern or a flat-top pattern) are desired.
Many light sources, such as a tungsten bulb, have a certain source structure. If
imaging optics is used to handle the illumination light, the light source
structure will be imaged in the illumination pattern. Such a result is not
desired. Therefore, illumination optics intentionally avoids forming any
images, as illustrated in Fig. 1.35(b). Light from many source points can reach
the same point on the working plane, or light from one source point can reach
many points on the working plane. That is why illumination must be discussed
in a separate section. Generally speaking, illumination optics is simpler than
imaging optics, in terms of the number of variables involved and the
complexity of the merit function, because the requirements for an illumination
pattern are often not specified to a high accuracy. Illumination optics is also
less widely used than imaging optics.

Since illumination optics does not focus the light from an object to form an
image, all of the aberrations discussed in Section 1.12 are no longer relevant.
Aberrations are sometimes utilized to generate the desired illumination pattern.
The source wavelength can still be an issue. Besides the capability of generating

Light A
source
Light
source
Lens Working
plane
(b)

Figure 1.35 (a) An imaging lens forms an image of an object on an image plane. (b) An
illumination lens forms the light from light source points to illumination patterns on a working
plane. The combination of these illumination patterns is the desired illumination pattern.
There is no image formed.
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a certain illumination pattern, the light-collecting power is another important
issue for image optics.

Optical design software for imaging optics are often capable of designing
illumination optics as well, but their capability to design illumination optics is
inferior. The designer sets the desired illumination pattern as the target in the
merit function in the software, and the software will try to find a certain optical
structure to meet the target. The raytracing technique used to design
illumination optics is called “non-sequential raytracing,” whereas the raytracing
technique used when designing imaging optics is called “sequential raytracing.”

Illumination optics deal not only with optical components to handle the
light but also the light sources, including various types and shapes of light
bulbs, lasers, and light-emitting diodes (LEDs). These light sources can have
dramatically different characteristics and illuminations. Lenses used to work
with different light sources can also be very different.

Section 12.4 will discuss the modeling of illumination lenses and light
sources.

1.15 Radiometry

Radiometry is the science about handling light intensity. Among the units and
terminologies used, some are unique and may be confusing. In this book, only
the International System (SI) of units is used to avoid unnecessary complexity.
The two widely used terminologies in radiometry are “radiance” and
“irradiance.” The former means the power per unit solid angle per unit area,
and the latter means the power per unit area.

Many optical engineers and scientists are more experienced handling
imaging optics than handing radiometry, although radiometry contains less
substance than imaging optics. See Palmer and Grant'' and McCluney'? for
more about radiometry.

1.15.1 Lambert’s cosine law

One basic law in radiometry is Lambert’s cosine law. The radiance charac-
teristics of most diffusive surfaces can be approximately described by'?

J(0) = Jycos(0), (1.35)

where Jj is the maximum radiance that appears in the normal direction of the
radiation source surface, 0 is the angle between the direction of interest and
the radiation normal, and J(0) is the radiance in the 6 direction.

One interesting characteristic of Lambertian sources is that the apparent
radiance viewed in any direction is the same. In a direction 6 off the source
normal, the radiance falls from J,, to Jocos(0), and at the same time the source
area being viewed is increased by a factor of 1/cos(), as illustrated in
Fig. 1.36; these two factors compensate each other.
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Figure 1.36 A Lambertian source has the same radiance in any direction.

1.15.2 Light-collecting power of a lens

One key specification of an illumination lens is its light-collecting power.
Consider the case shown in Fig. 1.37, where the irradiance power P collected
by this lens is given by

P= | AJycos(0)dQ

27rcos(0)dr

]
cos(0)

R

21'rAJ
/ reost (1.36)
0

AJycos(0)

o\% \

where A is the area size of the light source; o is the distance between the light
source and the lens; 7 is the distance between the lens and the illuminated area
with size A’; J, and Jy' are the peak radiance and irradiance of the light source
and illuminated area, respectively; R is the radius of the lens aperture; 6 and 6’
are the angles between the point of interest on the lens and the optical axis,
respectively; the largest value of 0 is 8y = sin '[R/(0* + R>)"™]; r = 0 x tan(0) is
the radial variable on the lens, dr = o x d8/cos(8)*; dQ = 2mcos(0)rdr/[o/cos(0)]*
is the incremental solid angle marked by the grey color ring on the lens imposes
on the light source; and d() is integrated over the entire lens aperture.
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Figure 1.37 A lens with aperture radius R collects light power emitted by an area light
source.

When o < R, Eq. (1.36) leads to P =mwAJ,, which is the total power of a
Lambertian source emitted to a half-sphere.

1.15.3 Inverse square law

For 0> R, Eq. (1.36) reduces to P = wAJyR*l0> ~ 1/0>. This means that the
light power collected by a lens is inversely proportional to the square of the
distance between the lens and the light source, which is the inverse square law.
When R/o — 0, Eq. (1.36) leads to P — 0, and the lens is too small or placed
too far from the source, or both.

1.15.4 A point illuminated by a circular Lambertian source

Consider a point that is illuminated by a circular Lambertian source. The
point is at the optical axis of the light source and a distance o away, as shown
in Fig. 1.38. The source has a radius R and radiance Jocos(0); the irradiance
power the point receives can be calculated by

point

Figure 1.38 A circular Lambertian light source with radius R illuminates a point at the
optical axis of the source and a distance o away.
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R

P /Jo cos 21-rrcos( 2)a’r
0 Bl

%

:217J0/sin(6) cos(0)d6 (1.37)
0

= mJysin?(0,,)
R2

= J0—02+R2’

where 2mcos(0)rdr/[o/cos(0)]* is the incremental solid angle marked by the
white ring on the source, r =0 x tan(0) is the radial variable on the source,
dr =0 x dblcos(0)?, and the largest value of 0 is 0,, = sin '[R/(0® + R?)*7].

Note that the derivation of Eq. (1.37) is similar to the derivation
of Eq. (1.36), and the results of these two equations are similar. Again, for
0> R, Eq. (1.37) reduces to P =wJyR*/0* ~ 1/0%, and for 0o < R, Eq. (1.37)
reduces to P =1J,.

1.15.5 A working plane illuminated by a point source: the cos*(0)
off-axis relation

Consider a Lambertian point light source that illuminates a working plane
perpendicular to the normal of the source radiance and has a distance o to
the light source, as shown in Fig. 1.39. This radiance normal direction is the
optical axis. A unit size area a on the optical axis at the working plane
obviously receives the peak irradiance. For an off-axis unit size area b on the

N
‘ Off axis
unit area
< /'/Q On axis
Oy unit area
olcos(8)
0/

Optical axis and
1rrad1ar}ce normal Working plane

of the light source

Point Lambertian
light source

Figure 1.39 The radiance received by an off-axis unit area from a point Lambertian light
source is cos*(6) of the radiance received by the on-axis unit area, where 6 is the off-axis
angle.
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working plane with an angle 6 to the optical axis, the irradiance received is less
than the irradiance received by a because of three factors:

1. The area projected by b in the direction of the light source is smaller
than b by a factor of cos(0), so the irradiance received by b is lowered by
a factor of cos(9).

2. The distance from the light source to area b is o/cos(6). Thus, the
irradiance received by b is lowered by a factor of cos?(0), according to
the inverse square law.

3. Finally, if the light source is Lambertian, the radiance in the direction
of b is lower than the peak radiance in the normal direction by a factor
of cos(0).

The irradiance received by unit area b can be found by multiplying all
three factors, i.e., cos*(8) of the peak irradiance received by unit area a.

1.15.6 Etendue and radiance conservation

There are two conservation quantities in illumination optics: etendue and
radiance. These two quantities are related, and familiarity with them can help
one understand the performance of existing illumination lenses and design
new illumination lenses.

Consider a lens with radius R that takes light from a light source a
distance o away and transforms the light to illuminate an area a distance i
away, as shown in Fig. 1.40, where & and /' are the half height of the light
source and the illuminated area, respectively, and Q = wR*/o> and (V' = wR*/i
are the solid angle the lens imposes on the light source and the illuminated
area, respectively. Note that the // shown here is an ideal case. For a real lens,
there are always some defects or aberrations; the real /' will be somewhat
larger than the /" shown here. Thus, the relation #/o < /'/i in the plane of the
page can be established. A similar relation in the plane perpendicular to the
page plane also holds. The relation

<= (1.38)

) Illuminated area
Light
source

Figure 1.40 A lens with a radius R takes light from a light source a distance o away and
illuminates an area a distance i away.
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can then be established, where A4 = A and A’ =K' are the size of the light
source area and the illuminated area, respectively. Multiply both sides of
Eq. (1.38) by wR? to produce

AQ < A'QY. (1.39)

AQ is the etendue or throughput of the lens. Equation (1.39) is the etendue
conservation law, which says that for a perfect lens the etendue remains a
constant as the light propagates through the lens. If the lens is not perfect,
etendue increases as the light propagates through it.

Etendue has applications in the design of illumination lens. For example,
consider the use of a lens to couple all of the light power from a light
source 100 mm away into a light guide 100 mm away. The light source size
A=2 cm?, and the light-guide area size is A'=1 cm? Then Eq. (1.39) is
violated: only a portion of the light power can be coupled into the light guide,
and the intended outcome will certainly fail.

When a light source and an illumination lens illuminate an area, the
power that the illuminated area receives can be written as 7' x P, where T<1
is the transmission of the illumination lens, and P is the power collected by the
lens from the light source. By taking an inverse of Eq. (1.39) and multiplying
both sides by P, the result is

P P TP _ RTP
-2 > 2 )
AQ~ AN AV~ AY

(1.40)

where R<1 is the reflectivity of the area being illuminated. By definition,
PI(AQ) = J, is the radiance of the light source, and RTP/(A" ))=J, can be
considered as the radiance of the illuminated area. Then the radiance
conservation law is

Jo=J). (1.41)

Equation (1.41) states that the radiance of an area can never exceed the
radiance of the light source that illuminates this area.

Etendue exists beyond geometrical optics; a similar relation also exists
in wave optics and Gaussian beam optics, which will be discussed in
Chapters 2 and 3.

1.15.7 Radiometry and photometry

Radiometry deals with the detection and measurement of electromagnetic
radiation across the entire spectrum. The measured radiation is an absolute
power. Photometry is a subfield of radiometry that scales the measured,
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absolute radiometric power by the spectral response (photopic curve)
of human eyes. (The spectral response of the human eye is plotted later in
Fig. 7.22.)

Radiometric quantities, particularly photometric quantities, may appear
to be confusing or even odd. Table 1.1 summarizes the correspondence among
the most commonly used radiometric quantities for SI units and photometric
units.

By definition, 1 watt (W) of radiant power with a wavelength of 555 nm,
which is the peak wavelength of the photopic curve, equals 683 lumens (Im).
Then, from Fig. 7.22, 1 W radiant approximately equals 223 Im at 500 nm and
approximately equals 429 Im at 600 nm.

There are other, less frequently used photometric quantities. For example,
candela = Im/sr is also used. However, some of these quantities appear to be
already or gradually becoming obsolete.

1.15.8 Blackbody

Any object radiates. The spectrum of the radiance is a function of the
temperature described by Planck’s law:'*

2hc? 1

N5 KT _ 1 (1.42)

INT) =

where I(\, T) is the spectral radiance with units of W/(Sr-m?-d\) (watt per
solid angle per square meter and per meter wavelength), A is the wavelength,
T is the temperature in kelvin, h=6.62606957 x 10°* m’kg/s is the
Planck constant, ¢ =3 x 10® m/s is the velocity of light in vacuum, and
K =1.3806488 x 10** m’kg s °K ' is the Boltzmann constant.

Equation (1.42) is plotted in Fig. 1.41 for six values of 7 from 250 K
(=23°C) to 500 K (227 °C) and in Fig. 1.42 for five values of 7 from 500 K to
4000 K. Note that the unit used in Figs. 1.41 and 1.42 is watt per solid angle
per square meter area per nm spectrum.

Table 1.1 Correspondence among the most commonly used radiometric
quantities of Sl units and photometric quantities

Radiometric Photometric
Quantity Units Quantity Units
Radiant power w Luminous flux Im
Radiant intensity Wisr Luminous intensity Im/sr
Irradiance Wim? [luminance Im/m?

Radiance W/m?-sr Luminance Im/m>sr
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Figure 1.41 Plot of Eq. (1.42), the blackbody radiance spectra for six different
temperatures from 250-500 K.
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Figure 1.42 Plot of Eq. (1.41), the blackbody radiance spectra for five different
temperatures from 500 K to 4000 K.

The fraction of power contained in a certain spectral range can be
found by

~ PI\T)dT

FI) = 5 INT)dT®

(1.43)

where a and b are the lower and upper limits of the spectral range of interest,
respectively. F(T) is plotted in Fig. 1.43(a) for ¢ =9 pm and » =15 pm. This
spectral range is best for detecting objects with temperature around 7'~ 320 K
and has the highest fraction power of ~0.36.



Geometrical Optics 57

037 T T T 0.44 T 4
5} 5]
: :
§ 032F 1 043 -
g 3
2 @

320 2950
027 (I ] 0.4 I I 1 1
220 285 350 415 480 2600 3100 3600
Temperature (K) Temperature (K)

(@) (b)

Figure 1.43 (a) The fractional power contained in the 9—15-um range for temperatures
from 220-480 K. (b) The fractional power contained in the 0.9-1.7-um range for
temperatures from 2600-3600 K.

For near-IR hyperspectral imaging applications, the spectral range of

interest is about 0.9—-1.7 pm. F(T) is plotted in Fig. 1.43(b) for this spectral
range. The highest fractional power of ~0.442 appears at 7~2950 K.
[Nlumination lamps with a color temperature of ~2950 K have the best
efficiency.
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