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1.1 Classical (Coherent) Singular Optics: Applying Solid State
Physics to Optics—Wavefront Dislocations

The term singular optics emerged after the publication of a seminal paper by
Nye and Berry1 in 1974. Nye and Berry noticed a remarkable kinematic
analogy among the peculiar/singular regions of structured electromagnetic
waves and the structure of real crystals having various defects, including
edge and screw dislocations defined by the Burgers vectors.2 This analogy
was of great interest and at the same time was quite predictable, as John Nye
came to the field of Optics from Solid State Physics, where he was disciple of
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W. L. Bragg. The approach of applying solid state physics to optics has turned
out to be highly fruitful as applied to the problem of laser (coherent) phase
conjugation,3 as well as to the theory of volume holograms of speckle fields.4

Additionally, Zel’dovich et al. proposed an excellent interference technique
for detection and diagnostics of wavefront screw dislocations by typical
bifurcations of interference fringes when an off-axis reference wave is added to
the speckle field having ‘one amplitude zero per speckle’ on average.5 Similar
results were obtained and illustrated a little later by the authors of this book.6

Since the mid-1990s, the term ‘singular optics’ has been propagated by Soskin,
and since the publication of the review chapter, “Singular Optics”7 in Progress
in Optics at the beginning of the third millennium, this term has become
generally accepted.8

The central theme of singular optics involves investigation of so-called
phase singularities that arise at given elements of a light field (e.g., points of
lines—contours that are closed within the region of observation, at infinity, or
at a cross-section of a beamlike (or paraxial) wave; lines or surfaces; or
envelopes in three dimensions), where the amplitude of a field vanishes and a
phase becomes undefined, i.e., singular (see Fig. 1.1). The origin of such
singular elements of a field is a completely destructive interference accompanied
by the peculiar behavior of the phase in the vicinity of singular elements. In the
course of establishing singular optics as a field of research, various terms were
used for designating the same subject; phase singularities, amplitude zeroes,
wavefront dislocations, and optical vortices are all synonymous with each
other. (The Laguerre–Gaussian laser mode7,9 is a widespread example of a
beam supporting a central optical vortex.) In the context of this book, all of
these terms convey the same essential condition: the impossibility of
determining a phase when the amplitude of a disturbance vanishes.

What fuels our interest in phase singularities in light fields? Why do we
(including the reader) aspire to elucidate phase singularities as an attractive
subject of modern photonics? Besides being of purely theoretical interest in

Figure 1.1 (a) Edge and (b) screw dislocations of a wavefront. In both cases, the field
amplitude equals zero at the dislocation axis, and the phase changes by 2p under the
circumference of the dislocation line. (c) Amplitude and (d) phase structures of a singly-
charged screw dislocation in Laguerre–Gaussian mode shown in fragments.
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the context of classical optics and, specifically, of structured light, we are
highly intrigued by the possible applications of optical beams supporting
phase singularities in manipulating the minute quantities of a matter, which is
of vital importance for modern nanophysics, crystal growth, problems of
nanodots, metamaterials, nano-optics, near-field optics and super-resolution,
precision chemistry and pharmacology, etc. It has been reported that various
kinds of singularities are able to ‘captivate’ small particles (of micro- and
nanoscales) and provide fine mechanical action, such as ordered motion,
rotation with controlled direction and velocity, and convergence and
divergence of such particles. A wide variety of optical traps, optical tweezers,
and optical manipulators10–13 exploiting phase singularities have been
proposed.

On the other hand, detection and diagnostics (where appropriate, as is for
screw dislocations) of the singular elements of an optical field enable the
reconstruction of its ‘singular skeleton,’ which is of interest in two respects.
Firstly, if one knows the loci and characteristics of phase singularities at the
analyzed field, then, due partially to well-established sign principles (see
Section 1.314,15), by alternating the signs of chirality of the neighboring
vortices, one can predict the behavior of the optical field parameters at all
other regions of a beam, at least in a qualitative manner, to within the
accuracy of the phase, for instance, p/2. Secondly, if one wishes to realize
telecommunications with singular-optical coding, one must use the mentioned
sign principles. Namely, one must take into account not only the loci of
optical vortices, but also their signs (topological charges),7,8 which determine
the angular optical momentum of a beam and correspond to the direction of
phase twirling (clockwise or counterclockwise) under the circumference of the
amplitude zero. Owing to the translation of the singular elements alone, data
compression by several orders of magnitude can be achieved, allowing the
optimal use of the channel capacity.

Additionally, reconstruction of the singular skeleton of an optical field
facilitates solving other problems in optics, including the inverse phase
problem.16–21 The phase problem involves revealing spatial (coordinate) phase
distribution in complex (speckle-type) fields. This problem has been
successfully solved within the framework of the singular optics approach
based on the following concepts:15

1. the field skeleton having “reference” structure-forming elements,
i.e., the field amplitude zeros;

2. the sign principle in the spatial distribution of the amplitude zeros: In
correspondence with the sign principle, one can predict the behavior of
the optical field parameters at any region of a beam, at least in a
qualitative manner, within the accuracy of phase to, e.g., p/2; and

3. the interconnection of the intensity spatial distribution and the field
phase distribution.
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By all appearances, vortexlike (or spiral-like) motion is among the
universal types of motion found in both classical and quantum22 physics.
Therefore, the investigation of phase singularities per se is important and has
unequivocal validity.

1.2 Problems of Scalar Coherent Singular Optics: Light Fields
with Phase Singularities—Control and Diagnostics of their
Parameters

The notion of coherence is among the most fundamental concepts of modern
optics, being intrinsically connected to the characteristics of light that create
the foundation for classical wave optics, such as intensity, phase, and
polarization.23,24 For didactic purposes, one might attempt to distinguish
between intensity, polarization, and coherence of a light field. However, every
practical experiment involves the problem of the inseparable interconnection
among them. Therefore, one cannot define coherence by aspiring to associate
it with the visibility of an interference pattern, ignoring the states of
polarization of the superposed beams. Note that attempts to explain the
Young’s interference experiment for “completely unpolarized” light some-
times lead to questionable conclusions.25 At the same time, the most
fundamental definition of polarized light is given simply by the measure of
mutual coherence of the orthogonally polarized components of a beam.
Finally, all three of these characteristics of a light beam (intensity, coherence,
and polarization) are not entirely separable, being comprehensively expressed
through known combinations of Wolf’s coherency matrix elements.26 In 2003,
Wolf determined the fundamental role of interference for analysis of partially
polarized light based on the unified theory of coherence and polarization of
random EM fields.23,24 The coherency matrix introduced by Wolf,

Wðr1,r2Þ ¼
�
Wxxðr1,r2Þ Wxyðr1,r2Þ
Wyxðr1,r2Þ Wyyðr,r2Þ

�
,

where Wijðr1,r2Þ ¼ hE�
i ðr1ÞEjðr2Þi, (i, j ¼ x, y), ensures a transition from the

optical field parameters to the correlation functions, i.e., some “abstract”
constructions that can be directly determined from measurements of the field
intensity for properly specified conditions of the interference experiment. Note
that the coherency matrix can be represented by using the Stokes parameters
that contain the data on correlation among the Cartesian components of the
fluctuations of the electric field vector at a specified spatial point and a
specified instant of time. For this reason, the Stokes parameters do not
describe the changes in the state of polarization of a light beam that
accompany its propagation.
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During its initial establishment (1981–2001) as a stand-alone topic of
research, singular optics was developed as a study of coherence. So, in the
simplest case, one considers the only complex amplitude of a scalar
monochromatic, homogeneously and completely polarized EM field, aexp
(iw), a and w being the amplitude and phase of the disturbance, respectively. In
the case of screw dislocation (a vortex), w ¼ l2p under the circumference of
the point of zero amplitude at the observation plane perpendicular to the
mean direction of propagation of the paraxial optical beam. The notation
l represents the integer designating the order of singularity and generically
equals ±1 (clockwise–counterclockwise). In three dimensions, there is a
‘snakelike’ trajectory.3,4 Amplitude zero at the specified point results from
complete destructive interference of the disturbances going to this point from
all possible pairs of oppositely located wavelets. These wavelets are associated
with the Huygens–Fresnel secondary sources lying at the vanishingly small
circle around amplitude zero. This means that, crossing an amplitude zero, the
field undergoes a steplike change of phase by p. This peculiarity (just
singularity) may be directly observed in the radiowave domain of EM
radiation.1 Due to a large difference in the scale of frequencies, a similar
observation is quite impossible within the visible range of EM radiation. In
this case, the natural solution for detection and diagnostics of phase
singularities involves (as has been previously mentioned) the use of a
reference beam (axial or nonaxial) that is correlated with a tested singular
beam. Typical structures of the resulting interference patterns (an example of
which will be provided in Section 1.3) provide efficient diagnostics of phase
singularities if an observer has a priori information on the experimental
conditions, including geometrical provisions, such as the direction and/or
curvature radius of a reference beam with respect to the tested singular beam.

Another problem of coherent singular optics arises in the formation of
light beams with controlled phase singularities. Many experimental studies
offer solutions to this problem, including, e.g., the review in Ref. 7. By all
appearances, the most practicable and popular approach is the use of
computer-generated holograms.27,28 To obtain the beams with elementary
phase singularities, one computes a wave structure having a kind of Laguerre–
Gaussian [(LG) for screw dislocations] or Hermite–Gaussian [(HG) for edge
dislocations] mode8 with the imposed coherent reference beam. Such a pattern
is printed using a high-resolution printer and then photographically diminished
to a desirable scale. When such a computer-generated and photographically
implemented hologram is illuminated with a laser beam, high-quality singular
beams with well-established and simply controlled properties are reconstructed
in nonzero diffraction orders.

Recently, crystalline media have been used for engineering light beams
with phase singularities, where a combination of anisotropy, absorption, and
chirality is involved in both demonstration of singularity generation as well as
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possible transformation of phase singularities into polarization singularities
(see Section 1.3). Knowing the mechanisms of the origin and annihilation of
singularities, one can identify which crystals can be used as a tool for
investigating polarization singularities.29

Studies in coherent scalar singular optics have been successfully used for
development of a new generation of devices for optical trapping and control
of the motion of micro- and nanoparticles, in optical telecommunications and
imaging devices, as well as for defectoscopy of media, including photonic
crystals.30

Another issue related to coherent scalar singular optics [i.e., singular optics
of a completely coherent, homogeneously polarized (in space) light field, for
which the specific state of polarization can be neglected] is its anticipated
applications. As previously mentioned, the most promising of such applications
is, very likely, development of a new generation of devices for optical trapping
and control of the motion of micro- and nanoparticles. Another foreseen
application involves use of the sign principles that connect all phase singularities
in the singular skeleton for exploiting in optical telecommunications.

Of great importance here is the following: It appears that if a light beam is
not completely coherent, completely monochromatic, and completely and
homogeneously polarized (in space), then completely destructive interference
with the occurring amplitude zeroes is impossible. What can be done in this case?

As is noted in Ref. 31, “. . . each singularity disappears at a deeper level of
description. . . it is true for perhaps all singularities in physics,” and further
on, “Scalar optics has its own singularities, in the form of nodal lines in space
(that is, phase singularities, or optical vortices), and these in turn disappear in
polarization (i.e., vector wave) optics, whose singularities are loci of pure
linear or purely circular polarization” (see Section 1.3). This methodological
concept is the Ariadne’s thread for elaborating on the topic of our book.

An additional problem arises: One cannot form a reference wave that is
simultaneously correlated with all components of a partially spatially coherent
field, as is possible in the typical case, where such a field is assembled from a
set of uncorrelated components. If even one foresees new kinds of optical
singularities, what experimental tools must be applied to detect such
singularities? The answer is currently not obvious. Undoubtedly, one must
seek out new experimental techniques for detection of singularities inherent in
partially coherent light fields (see Chapters 2 and 3).

1.3 From Optical Vortices to Coherent Polarization
Singularities: Sign Principle of Vector Singular Optics

In the late 1980s, the research area of singular optics was considerably
extended32–36 to the domain of completely coherent but so-called pseudo-
depolarized fields, i.e., optical fields that are completely polarized but with the
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state of polarization changing gradually from point to point. These fields are
the same as those referred to by Crawford37 (see also Ref. 38) as being polarized
in small scale, but estimated as unpolarized in large scale. The state of pseudo-
depolarization is also sometimes called global depolarization.25 Pseudo-
depolarized fields arise, in part, from stationary, multiple coherent (laser) light
scattering,39 as in light scattering in a glass of milk, or in multimode optical
fibers, or in most types of natural matter in which volume scattering occurs. In
contrast to scalar singular optics, an explanation of the vector (polarization)
structure of a light field now becomes unavoidable. Note that the description of
pseudo-depolarized fields is possible within the Stokes polarimetry approach,
although the Stokes polarimetric analysis leads to considerably different results
for local and “global” (space-averaged) measurements.

The disappearance of scalar phase singularities into an inhomogeneously
polarized field is evident. When obtaining absolute amplitude zero in such a
field, one must expect precise spatial coincidence (not closeness!) of amplitude
zeros for two arbitrarily orthogonally polarized field components, but the
probability of such an event occurring vanishes. On the other hand,
the conditions are well known for forming a linearly or circularly polarized
field from the superposition of two correlated, orthogonally linearly (but not
necessarily) polarized components. So, to obtain a linearly polarized field
from such components, the two components must have a phase difference of
zero or p. In either case, for an arbitrary amplitude ratio of the orthogonal
components, one obtains a linearly polarized beam; the amplitude ratio will
determine only the azimuth of polarization.38,40 Thus, operating with a tiny-
structured, pseudo-depolarized light field, one can expect the presence of lines
(closed contours or contours closing at infinity) at the beam cross-section,
where the mentioned phase difference is conserved, but changing amplitude
ratio of the orthogonal components causes a gradual change in the azimuth of
polarization. At the same time, when obtaining circular polarization as a
result of superposition of orthogonally linearly polarized mutually coherent
components, one must satisfy two conditions simultaneously: (1) phase
difference ±p/2 and (2) equal amplitudes of the components (see Fig. 1.2).
This means that the conditions for obtaining circular polarization are much
stricter than those for obtaining linear polarization. It follows from this
consideration that one must seek isolated points where the pseudo-depolarized
field is circularly polarized.

As a result, one can image a coherent paraxial pseudo-depolarized field
(at its cross-section) as the set of isolated C (circularly polarized) points
demarcated by L (linearly polarized) lines. As in the case of a scalar field, the
system of stable polarization singularities forms the skeleton of a vector field,
determining its behavior at each point. For that, a new (with respect to scalar
singular optics) sign principle14 is valid.15,41,42 So, the handedness (clockwise
or counterclockwise rotation of the electrical vector of a light beam) is the
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same in the vicinity of a C point, alternating in a steplike manner by crossing
the nearest L line. In other words, the azimuth of polarization is undetermined
at C points, where the polarization ellipse degenerates to a circle, while the
handedness is undetermined at L lines, where the ellipse of polarization
degenerates to the intercept.

It can be shown43 that the sign principle for C points (as the phase-
difference vortices) is analogous to the sign principle for phase vortices in a
scalar field; i.e., the even numbers of C points are found at closed
equi-azimuthal lines, and adjacent C points at one equi-azimuthal line are
characterized by the topological charges of the azimuth singularity of
opposite sign.

Note that this singular-optical concept has a remarkable forerunner from
classical optics (in addition to those discussed in Section 1.5). In 1892, when
developing the principles of the mathematical theory of light, Poincaré
introduced the refined notion of the circular complex polarization variable
represented at the circular complex polarization plane.40 Poincaré proposed
the idea of imaging left-handed circular polarization at the center of a
complex plane (see Fig. 1.3). Then, he proposed imaging linear polarization
with all possible (within ±p/2) smoothly changing azimuths of polarization at
the unit circle radius. Continuing this construction, one finds that all states of
polarization of any completely polarized beam can be represented at this
plane, so that right-handed circular polarization is imaged at infinity in any
direction from the center of coordinates.

The situation is described as a whole using the circular complex
polarization variable:40

Figure 1.2 Ellipsometric parameters of a beamlike optical field: a is the azimuth of
polarization in arbitrarily chosen but fixed Cartesian coordinates; b ¼ tan�1ðb∕aÞ is the angle
of ellipticity; d is the vibration (initial) phase; I ¼ E2

x þ E2
y is the intensity of a beam (Ex and Ey

being x and y components of the electrical vector).
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xr,l ¼ Er∕El ¼ ðjErj∕jEljÞ expðdr � dlÞ, (1.1)

where Er and El are the complex amplitudes of right-handed and left-handed
circularly polarized components of a beam, respectively, and dr� dl is the
phase difference of these components. The situation can also be described in
terms of ellipsometric parameters:

xr,l ¼ tanðbþ p∕4Þ expð�i2aÞ, (1.2)

where a is the azimuth of polarization, and b is the ellipticity angle (see
Fig. 1.2), and both are functions of the spatial coordinates at the cross-section
of a paraxial pseudo-depolarized beam. Note that the representation in
Eqs. (1.1) and (1.2) leads to one-to-one correspondence among the points of
an unbounded circular complex polarization plane and the state of
polarization.

This representation of polarization is exhaustive for the case of completely
polarized light beams and, undergoing stereographic projection, leads to a
generally accepted current description of polarized light fields using the
Poincaré sphere. The physical meaning of this description is rooted in its
direct connection to the set of the Stokes parameters45 (see Fig 1.4).

Meanwhile, this representation suffers from at least two restrictions.
Firstly, the measure of ‘closeness’ or ‘remoteness’ of two states of polarization
is nonuniform over the complex plane. So, going from left-circular
polarization to the L contour (see Fig. 1.3) means traveling from the center
of the coordinates to the unit circle radius. In contrast, going from the L
contour to the right-circular polarization means traveling from the unit circle
radius to infinity. Secondly, this representation is limited by the case of
completely polarized beams. The approximation of completely polarized
beams is a far-fetched idealization, as only a completely monochromatic field

Figure 1.3 (a) The Poincaré complex polarization plane reflecting the complex circular
polarization variable xrl and (b) the singular-optical incarnation of this model44 for a
completely polarized beam of the LG1

0 mode.
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would be completely polarized.46 A realistic case of partially polarized light
beams is not covered by the method that uses the circular complex
polarization plane nor by the standard method that uses the Poincaré sphere,
as partially polarized beams are not represented within the framework of these
approaches. It is remarkable that both mentioned problems are solved by
applying stereographic projection of the complex polarization plane to the
Poincaré sphere or, more generally, to the Poincaré ball47,48 (see Fig. 1.4).

This problem will be considered in detail and solved in Chapter 4. Here we
note only that no devices exist that separate a partially polarized beam into
completely polarized and completely unpolarized components. This is in
accordance with the classical definition of the degree of polarization38,40 as a
share of the intensity of the completely polarized component of a partially
polarized beam in its total intensity, P ¼ Ip∕ðIp þ IuÞ, where the subscript
letters p and u denote completely polarized and completely unpolarized
components, respectively. Nevertheless, one can introduce the generalized
definition of the complex degree of polarization44 and, applying 2D Stokes
polarimetry, detect and diagnose the phase singularities of this new complex
parameter of an optical field (see Chapter 4).

There are some relevant considerations. As has been pointed out by
Freund,49 we are not to the point where we can experimentally investigate the
problem of coherence and polarization of optical light in the general 3D case,
when the paraxial approximation is violated and one cannot neglect any of the
three Cartesian coordinates for describing the behavior of the electric vector.
In this context, another problem has been discussed, i.e., so-called optical
currents (flows).50–55 These studies50–55 are essentially substantiated by the
fact that micro- or nanoparticles (serving to identify inhomogeneously
polarized and partially coherent optical fields) affect this field as absorbing
and retransmitting particles with their own characteristics, such that the state
of a field, in general, changes under the influence of such secondary

Figure 1.4 (a) Stereographic projection of the complex circular polarization plane to the
Poincaré sphere with a uniform measure for ‘closeness’ of the states of polarization and (b)
correspondence of the Cartesian coordinates of the point at the Poincaré sphere to the
Stokes parameters.
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radiators.11–13,56–58 Investigations in this domain have been actually
stimulated, in part, by the studies reported in Refs. 59–63, where the classical
approaches of the theory of coherence are complemented by the parameters
describing partially coherent fields in both space and in time, the so-called
intrinsic degrees of coherence. At the same time, typical as well as new results
based on the theory of partial coherence and partial polarization have become
critical in their application to the concept of singular optics.

1.4 Polychromatic Singular Optics

Progressing from coherent scalar singular optics to vector singularities in
inhomogeneously polarized coherent fields, including phase singularities of
the complex degree of coherence and the complex degree of polarization, the
next step becomes quite predictable, namely, extending the singular optics
approach to polychromatic light fields. It might seem at first that a
polychromatic field does not possess the coherence necessary for completely
destructive interference, which results in the appearance of amplitude zeros.
Nevertheless, phase-singularity-type optical vortices can arise in some spectral
components of a wave with rich spectral content. A requirement for such an
event to occur is the presence of spatial (rather than temporal) coherence. It is
intuitively clear that subtraction of any spectral component from ‘white’ light
(typically accompanied by considerable, although not perfect, suppressing
neighboring components) results in complementary coloring. Note that
investigation of phase singularities in polychromatic optical fields has been
accompanied by the introduction of new experimental techniques and data
processing algorithms, resulting (in part) in the concept of chromascopy.64,65

Diagnostics of optical vortices in polychromatic66 (and even in polyphonic67)
fields as well as some interesting manifestations of the singular-optical
phenomena in such fields are considered in Chapter 5.

1.5 Forerunners of Correlation Singular Optics

One can see from the above concise historical outlook that since the beginning
of the third millennium (approximately), the second stage of singular optics
has been underway. Namely, coherent (both scalar and vector) singular optics
has evolved to correlation singular optics, defined as the wave singular optics
of partially coherent (both in space and in time) and/or inhomogeneously
partially polarized structured light fields.68–70 The importance of this
approach is supported by the fact that the concept of partial coherence is
the most fundamental and influencing concept of modern optics and
photonics. Born and Wolf45 wrote:

“An attractive feature of the theory of partial coherence is the fact that
it operates with quantities (namely with correlation functions and with
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some averaged intensities that may, in principle, be determined from
experiment. This is in contrast with the elementary optical wave
theory, where the basic quantity is not measurable because of the very
high rapidity of optical vibrations. . . The mathematical techniques
employed in connection with partial coherence are also very suitable
for the analysis of partial polarization. Here one is concerned with
phenomena which can be interpreted in terms of correlation between
orthogonal components of the electromagnetic field vectors.”45

On the other hand, it is understood that any parameter of an optical field that
can be generalized to the complex form (even to the form traditionally defined
as real and non-negative visibility of an interference pattern) may possess its
own phase singularities.71 Elaboration of these intrinsically correlational
singularities leads to a deeper understanding of the structure of complex
optical fields, as well as to new promising applications of singular beams with
a controlled degree of spatial and temporal coherence, a controlled degree of
polarization, and broad spectral content.

It is of interest to emphasize in this context that, strictly speaking, singular
optics was conceived initially simply as correlation optics. So, considering a
structured optical field assembled from a few (only six) planewave
components slightly differing in wavenumbers and in orientation of wave
vectors, Sommerfeld theoretically predicted in 1950 the presence of peculiar
zones46 (see Fig. 1.5), where the amplitude of such a structured resulting field
vanishes, and the wavefront becomes so complicated that even the definition
of a wavelength (in the classical sense) becomes problematic.

Further, the pioneering investigation of Nye and Berry1 has been also
carried out just for signals (for wave trains, which are time-bounded and by
definition cannot be strictly monochromatic), rather than for an idealized,
perfectly monochromatic wave (which is, by definition, time-unbounded).72

One additional important observation preceded the emergence of the field
of correlation singular optics in the sense applied here: the enigmatic coloring
of white-light radiation diffracted at rough surfaces with intermediate
parameters of roughness when the surface cannot be specified as slightly
rough,73 but rather is specified as a scattered field, yet it contains a
considerable number of regular components.74 A definitive explanation of this
observation was provided within the singular-optical concept:75 it is a result of
the singularity of the complex amplitude transmission coefficient for some
spectral component of polychromatic probing beam (see Chapter 5).

It worth noting also that, even before the creation of lasers, one of the first
examples of the singular optics phenomenon was elaborated on both
theoretically and experimentally for spatially incoherent sources of light—
without the use of singular-optical terminology. In Refs. 76 and 77, E. Wolf
and B. Thompson develop the consequence of the Van Cittert–Zernike
theorem concerning the analogy between diffraction of a strictly coherent,
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monochromatic light field at a specified aperture and propagation of light
from a quasi-monochromatic spatially incoherent source with the same form
and size as those of the mentioned aperture. These results were formulated in
terms of the theory of partial coherence alone, and are so well known that they
do not need to be included here, appearing in detail in many books [see
Ref. 45 (Section 10.4.4)]. We will discuss in an intuitive manner only the
singular-optical aspect of these results.

The coherency function obeys the wave equation, so that coherence
propagates in free space like a wave, and the spatial coherency function at
specified distance from quasi-monochromatic, spatially incoherent source is
described by the same integral transformations as a coherent diffraction field
from an associated aperture. As such, the structure of the spatial coherency
function must have the same peculiarities as the diffraction pattern from an
associated aperture. In part, if an aperture (source) is circular, then the
corresponding distribution of the normalized amplitude (the coherency
coefficient) is described by the Bessel function.45 At the root of the Bessel

Figure 1.5 Instantaneous pattern of a “wave train” consisting of six independent plane
waves; the solid lines are the isophases, and dashed lines are isoamplitudes. Frequency
ratio: 95:97:99:101:103:105; directions of propagation (in radians): þ1/20, þ1/20, 0, 0,
�1/20, �1/20. Solid (in general, straight) lines show instantaneous zeros of the resulting
oscillating process. Dashed lines (similar to the horizontals on a topographic map) show the
wave amplitudes. The regular row of waves is broken at the points of zero amplitude. A new
wave period is thought to be arising at these points. An entire wave field propagates with
light velocity from left to right, and its form gradually changes. Three points labeled 0 are
directly computed (i.e., computed without explicitly using the singular-optical concept), being
typical zero-crossings of singular optics, and points labeled 4, 6, and 7 are the points of
the maximal amplitudes of the polychromatic field [reprinted from Ref. 46 with permission;
© (1954) Elsevier].
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function, the modulo of the complex coefficient of coherency (the factor of
coherency) vanishes, and the phase of this coefficient, by passing a root of the
Bessel function, changes its sign to the opposite sign, i.e., undergoes steplike
changes by p. (Mathematical definitions of this consideration will be provided
in Chapter 3.) In terms of singular optics,7 the modulo of the complex
coefficient of coherency directly corresponds to the phase singularity, but for
the complex coefficient of coherency of a partially coherent field, rather than
for the complex amplitude of a completely coherent field. Furthermore, since
the modulo of the complex coefficient of coherency equals the visibility of an
interference pattern from disturbances in two probing points specified at a
cross-section of the analyzed field,45 one can visualize the phase singularity
(nothing but edge dislocation) of the complex coefficient of coherency by
observing (1) zero visibility of the interference fringe for corresponding
distances between the probing beams, and (2) a half-period shift in interference
fringes that occurs when the phase crosses the root of the Bessel function,
i.e., changes the distance between probing points. This consequence of the
Van Cittert–Zernike theorem has been experimentally verified in Ref. 47.

It is worth noting that in these early observations one can detect some
peculiarities in a singular structure that was not understood until the modern
era of singular optics.33,78 Any singularity, including an optical one, can be
considered as a certain local structure with a point or linear core having an
undetermined (singular) magnitude of some parameter for the threshold
magnitude of the other (control) parameter as it gradually changes. In scalar
coherent singular optics, the field amplitude is the control parameter, while the
phase is the singular parameter that has undergone a p-magnitude jump at the
zero-crossing amplitude. Generally speaking, the sets of such parameters are
different for various kinds of beams. However, all kinds of singularities are
characterized by one common peculiarity that signals the presence of singularity
in the complex parameter of interest. This peculiarity involves the conical local
structure of the control parameter at the nearest vicinity of the singularity core.
The mentioned peculiarity, in part, enables one to determine the localization of
phase singularities as well as to differentiate them from the local minima (which
may be deep but are not necessarily so) of a field, neither of which can be
achieved by simply measuring the intensity distribution. To that end, the graphs
of Ref. 77 show the mentioned conical structure in the vicinity of the phase
singularity of the coherency coefficient, i.e., the zero magnitude of the modulo
of the complex degree of coherency.79,80 We will address this classical result
again in proper context in Chapters 3 and 4.

To sum up, the emerging theory of partial coherency has become one of the
most important and direct prerequisites to the subsequent formation of the
singular optics concept. Note that the above-considered diffraction–coherence
analogy based on theoretical and experimental elaboration of the ring-edge
dislocation of the spatial coherence function (though in other terms) has not
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been discussed to this point. Nevertheless, it is obvious that this analogy is a
strong argument in support of the conceptual interconnectivity of the classical
theory of partial coherence and the modern concept of singular optics.

1.6 Organization of the Book

This book is organized as follows. Chapter 2 is devoted to the Young–
Rubinowitz model of diffraction, i.e., the concept of an edge diffraction
wave.45,81,82 Although the consideration is carried out under the assumption
of completely coherent fields (as such, it might seem that this topic is outside
the context of the book), this concept will be essentially used in the chapters
that follow for substantiating and implementing new tools for experimental
detection and diagnostics of phase singularities in partially spatially coherent
and polychromatic singular-optical beams. Phase singularities of the
coherency functions and the complex degree of coherence83–85 are elaborated
on in Chapter 3. New kinds of vector phase singularities inherent to partially
coherent and partially inhomogeneously polarized structured optical
fields85–88 are described in Chapter 4. These include the corresponding sign
principles, as well as the means for practical assembly of such fields and
application of 2D Stokes polarimetry for detection and diagnostics of the
corresponding singular structures. An additional branch of correlation
singular optics, i.e., singular optics of polychromatic light fields, is highlighted
in Chapter 5.64,65,75,86 Chapter 6 is devoted to crystal singular optics, which is
rapidly developing in both conceptual and engineering aspects.30 Applications
of singular optics, including those pertaining to partially coherent, partially
polarized, and polychromatic light fields are presented in Chapter 7.

Note that the list of references given in the next section is not
comprehensive. Its purpose is to orient the reader in priority publications or
publications most suitable to gaining basic knowledge of the mentioned topics.
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