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Preface – Second Edition

To explain the origins of this second edition of Speckle Phenomena in Optics, it
is first helpful to trace the history of the first edition. The book was originally
published by Roberts & Company Publishers (a small startup publisher) in
2007. Roberts & Company was subsequently acquired by MacMillan
Publishing Company. The book continued to be published by MacMillan
under the Roberts & Company label. In 2019, MacMillan decided not to
continue marketing and selling the book, and returned the copyright to me, the
author. In the meantime, over a period of three or four years, I had been adding
material to the manuscript and making certain revisions to the original
manuscript in preparation for an improved second edition. In this Preface,
I outline some of the improvements that the reader will find in the second edition.

The first set of improvements I would call “stylistic.” A reviewer of the
first edition pointed out that some equations (especially those with exponents)
had been set in a typeface that was too small to read without a magnifying
glass. All equations with this problem have been modified to improve their
readability. A second stylistic problem was that in many figures, the curves
representing results of the analyses had been drawn with a point size that was
too small, so that they appeared too faint in the figures, at least too faint for
my taste. This error has been corrected throughout.

In addition to these stylistic changes, considerable material has been
added to this new edition:

• A new Section 3.2.4 considers a random walk with random-length
phasors, introducing different models for the length statistics;

• A new Section 3.2.5 considers a random walk with a random number
of random-length phasors;

• Sections 4.1 through 4.3 have been generalized so that they can be
applied to the subject of polarization speckle in later sections;

• In Chapter 4, entirely new Sections 4.5 and 4.6 have been added
covering the subject of polarization in speckle patterns, including
statistics of the Stokes parameters and polarization speckle;

• Sections 5.5, 5.6, and 5.7 are new simplified explanations of the effects
of a change of angle-of-illumination and change of wavelength on the
spatial structure of speckle;
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• Sections 5.8 and 5.9 are new simplified explanations of the spatial
structure of speckle in an in-focus imaging system and an out-of-focus
imaging system;

• Section 6.1 in the original edition contained an incorrect discussion of
speckle in the eye; this discussion has been corrected in the second
edition;

• Section 7.6 is an entirely new discussion of the characteristics of speckle
produced by “smooth” surfaces;

• Section 8.3 is a new section discussing how to create a spectrometer
that measures the spectrum of a source from the speckle it produces;
and

• A number of new references have been introduced in the second
edition.

The reader may note that some of the material presented in Chapter 4 of
the first edition has been moved to a new Chapter 5 entitled “Spatial Structure
of Speckle” in the second edition, a move that seemed logical when coupled
with the several new sections introduced in that chapter.

I would like to thank Prof. Mitsuo Takeda and Prof. Wei Wang for
educating me on the subject of polarization speckle. I would like to extend a
heartfelt thanks to two anonymous reviewers whose comments were extremely
helpful in preparing the final version of the manuscript. Again I thank my
wife, Hon Mai, for tolerating my many hours at the computer working on this
new edition. Finally, I thank Ms. Dara Burrows of SPIE for her extremely
careful copy editing of the manuscript; her suggestions improved the book
significantly.

Joseph W. Goodman
November 2019
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Preface – First Edition

Writing this book was a labor of love! In 1963, after finishing my Ph.D.
research in the field of radar countermeasures, the first subject in optics that I
studied in detail was speckle. So I began my career in optics with speckle, and
it has been gratifying to return to this subject again after more than 40 years.

This book is directed towards a sophisticated audience with a good grasp
of Fourier analysis, and a previous exposure to the broad concepts of statistics
and random processes. It is suitable for a graduate textbook or a professional
reference book. After the introductory chapter, the next three chapters deal
with the theory of speckle, while the last last five chapters deal with what I
consider to be application areas.

The field of speckle is a broad one, as evidenced by the breadth of the
subjects covered here. Inevitably I have failed to reference all those who
deserve credit for contributing to this field, and to those I have omitted, I offer
my apologies.

This book has been several years in the making, partially because in mid
course I was diverted to writing a third edition of Introduction to Fourier
Optics. I have learned a lot that I didn’t know about speckle in the process,
and I have many people to thank for this education. To begin, I owe a
tremendous debt to Pierre Chavel, of the Institut d’Optique, for reading the
entire book and making suggestions and corrections that improved the work
immensely. I thank Ben Roberts, of Roberts & Company Publishers, for
having faith that a book on this subject would be appropriate for his small
publishing company. I also thank Sam Ma, who also did yeoman’s duty
seeking out misprints and errors. I thank Lee Young, the copy editor who kept
my writing clear, consistent, and in good English.

On a finer-grain level, I thank the following for their help with the
material in various chapters:

Chapter 4 Kevin Webb, Isaak Freund and Mark Dennis;
Chapter 6 Kevin Webb, James Bliss, Daniel Malacara, Jahja Trisnadi,
Michael Morris, Raymond Kostuk, Marc Levinson, and Christer
Rydberg;

Chapter 7 Moshe Nazarathy and Amos Agmon;
Chapter 8 Mitsuo Takeda and James Wyant;
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Chapter 9 Michael Roggemann and James Fienup; and
Appendix A Rodney Edwards.

All of these individuals helped improve the book. Of course, responsibility
for errors rests with me.

Finally, I want to thank my wife, Hon Mai, who did not complain about
the many hours I spent writing this book, and in fact encouraged me to push
forward on many occasions.
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Chapter 1

Origins and Manifestations
of Speckle

1.1 General Background

In the early 1960s, when continuous-wave lasers first became commercially
available, researchers working with these instruments noticed what at the time
was regarded as a strange phenomenon. When laser light was reflected from a
surface such as paper, or the wall of the laboratory, a high-contrast, fine-scale
granular pattern would be seen by an observer looking at the scattering spot.
In addition, measurement of the intensity reflected from such a spot showed
that such fine-scale fluctuations of the intensity exist in space, even though the
illumination of the spot was relatively uniform. This type of granularity
became known as “speckle.”

The origin of these fluctuations was soon recognized to be the “random”

roughness of the surfaces from which the light was reflected [153], [138].1 In
fact, most materials encountered in the real world are rough on the scale of an
optical wavelength (notable exceptions being mirrors). Various microscopic
facets of the rough scattering surface contribute randomly phased elementary
contributions to the total observed field, and those contributions interfere with
one another to produce a resultant intensity (the squared magnitude of the
field) that may be weak or strong, depending on the particular set of random
phases that may be present.

Speckle is also observed when laser light is transmitted through stationary
diffusers, for the same basic reason: the optical paths of different light rays
passing through the transmissive object vary significantly in length on the
scale of a wavelength. Similar effects are observed when light is scattered from
particle suspensions. The speckle phenomenon thus appears frequently in
optics; it is in fact the rule rather than the exception. Figure 1.1 shows three
photos, the first of a rough object illuminated with incoherent light, the
second of the same object illuminated with light from a laser, and the third a

1This author also became involved in the study of speckle at about this same time and published
a technical report on the subject. See [76].
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If in addition the carrier frequency term is suppressed, we have a
representation of the form

Aðx, y; tÞ ¼ Aðx, y; tÞ ejuðx,y;tÞ: (1.3)

Note that the real part of Aðx, y; tÞ e�j2pnot is the original real-valued signal
we started with.

Such complex representations will be widely used throughout this book.
The speckle phenomenon occurs when a resultant complex representation is
composed of a superposition (sum) of a multitude of randomly phased
“elementary” complex components. Thus, at a single point in space–time,

A ¼ Aeju ¼
XN
n¼1

an ¼
XN
n¼1

an ejfn , (1.4)

where an is the nth complex phasor component of the sum, having length an
and phase fn.

In some cases it is convenient to explicitly represent the time or space
dependence of the underlying phasors and/or the resultant. In such cases we
might write

Aðx, y; tÞ ¼
XN
n¼1

anðx, y; tÞejfnðx, y; tÞ: (1.5)

Finally, there may be cases for which the basic phasor components arise from
a set of randomly phased complex orthogonal functions, such as modes in a
waveguide, in which case the sum may take the form

Aðx, y; tÞ ¼
XN
n¼1

cnðx, y; tÞejfn : (1.6)

With this background, we now turn to a detailed study of the statistics of
the length and phase of the resultant phasor under a variety of conditions.
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Chapter 2

Random Phasor Sums

In this chapter we examine the first-order statistical properties of the
amplitude and phase of various kinds of random phasor sums. By “first-
order” we mean the statistical properties at a point in space or, for time-
varying speckle, in space–time. While in optics it is generally the intensity of
the wave that is ultimately of interest, in both ultrasound and microwave
imaging, the amplitude1 and phase of the field can be detected directly. For
this reason, we focus attention in this chapter on the properties of the
amplitude and phase of the resultant of a random phasor sum. In the chapter
that follows, we examine the corresponding properties of the intensity, as
appropriate for speckle in the optical region of the spectrum.

A random phasor sum may be described mathematically as follows:

A ¼ Aeju ¼ 1ffiffiffiffiffi
N

p
XN
n¼1

an ¼
1ffiffiffiffiffi
N

p
XN
n¼1

anejfn , (2.1)

where N represents the number of phasor components in the random walk,
bold-faced A represents the resultant phasor (a complex number), italic A
represents the length (or magnitude) of the complex resultant, u represents the
phase of the resultant, an represents the nth component phasor in the sum
(a complex number), an is the length of an, and fn is the phase of an. The
scaling factor 1∕

ffiffiffiffiffi
N

p
is introduced here and in what follows in order to

preserve finite second moments of the sum even when the number of
component phasors approaches infinity.

Throughout our discussions of random walks, it will be convenient to
adopt certain assumptions about the statistics of the component phasors that
make up the sum. These assumptions are most easily understood by
considering the real and imaginary parts of the resultant phasor,

1The term “amplitude” will often be used to refer to the modulus of the complex amplitude.
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2.6 Random Phasor Sums with a Nonuniform Distribution of
Phases

Next we consider a random phasor sum for which the underlying phasor
components have a nonuniform distribution of phase. We retain the
assumption that all components are identically distributed, as well as all
assumptions about the independence of the components and independence of
the amplitude and phase of any one component.

We begin with the usual equations for the real and imaginary parts of the
resultant phasor,

R ¼ 1ffiffiffiffiffi
N

p
XN
n¼1

an cosfn

I ¼ 1ffiffiffiffiffi
N

p
XN
n¼1

an sinfn:

(2.42)

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

A

A

A A

A

A
0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

N = 1

N = 3

N = 5 N = ∞

N = 4

N = 2pA(A)

pA(A)
pA(A)

pA(A)
pA(A)

pA(A)

Figure 2.7 Probability density functions of the length A of random phasor sums having
N phasors, each with length 1∕
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p
.
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s2
R ¼ a2

4
½2þMfð2Þ þMfð�2Þ�

� a2

4
½2Mfð1ÞMfð�1Þ þMf

2ð1Þ þMf
2ð�1Þ�

s2
I ¼ a2

4
½2�Mfð2Þ �Mfð�2Þ�

� a2

4
½2Mfð1ÞMfð�1Þ �Mf

2ð1Þ �Mf
2ð�1Þ�

CR,I ¼ a2

4j
½Mfð2Þ �Mfð�2Þ� � a2

4j
½Mf

2ð1Þ �Mf
2ð�1Þ�,

(2.47)

where CR,I signifies the covariance of R and I ,

CR,I ¼ ðR�RÞðI � IÞ. (2.48)

As a special case, consider phases fn that obey zero-mean Gaussian
statistics. The density function and characteristic function of the phase in this
case are

pfðfÞ ¼
1ffiffiffiffiffiffi
2p

p
sf

exp
�
� f2

2s2
f

�

MfðvÞ ¼ exp
�
�s2

f v
2

2

�
.

(2.49)

Substitution in Eq. (2.47) yields

R ¼
ffiffiffiffiffi
N

p
a e�s2

f
∕2

I ¼ 0

s2
R ¼ a2

2

h
1þ e�2s2

f

i
� a2e�s2

f

s2
I ¼ a2

2

h
1� e�2s2

f

i

CR,I ¼ 0.

(2.50)

As an aside we note that both I and CR,I will always vanish for any even
probability density function for the fn.

Figure 2.8 shows a contour plot of the (approximate) joint density
function of R and I when N ¼ 100 and sf ¼ 1 rad. In this plot we have
assumed that all component phasors have length 1. Note that the contours are
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Chapter 4

Higher-Order Statistical
Properties of Speckle

Based on the material presented in Chapter 3, the statistical properties of
optical speckle at a single point in space (or, for dynamically changing
speckle, a single point in time) are understood. Now we turn to the joint
properties of two or more speckles, which can represent samples of a single
statistically stationary speckle pattern, or, in the bivariate case, the statistics
of two polarization components of a speckle pattern at a single point in space
or time.

4.1 Multivariate Gaussian Statistics

The underlying statistical model for a fully developed speckle field is that
of a circular complex Gaussian random process, with real and imaginary
parts that are real-valued, jointly Gaussian random processes. It is therefore
necessary to begin with a brief discussion of multivariate Gaussian
distributions.

The characteristic function of an M-dimensional set of real-
valued Gaussian random variables represented by a column vector
⃗u ¼ fu1, u2, : : : , uMgt is given by

Muð ⃗vÞ ¼ exp
�
j ⃗ūt ⃗v� 1

2
⃗vtC ⃗v

�
, (4.1)

where a superscript t indicates a matrix transpose, ⃗ū is a column vector of the
means of the um, and ⃗v is a column vector with components v1, v2, : : : , vM .
The symbol C represents the covariance matrix, that is, a matrix with element
cn,m at the intersection of the nth row and the mth column, given by following
expected value:

cn,m ¼ E½ðun � unÞðum � umÞ�: (4.2)
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⃗u ¼ fR1, R2, : : : , RN , I1, I2, : : : , INgt:

Because the fields of interest are circular complex random variables An
and Am, we have

Rn ¼ In ¼ Rm ¼ Im ¼ 0

R2
n ¼ I2

n ¼ s2
n

R2
m ¼ I2

m ¼ s2
m

RnIn ¼ RmIm ¼ 0

RnIm ¼ �RmIn

RnRm ¼ InIm:

(4.7)

The form of the probability density function in Eq. (4.3) becomes

pð⃗uÞ ¼ 1
ð2pÞN jCj1∕2 exp

�
� 1
2
⃗utC�1 ⃗u

�
, (4.8)

where

C ¼

2
666666664

R1R1 R1R2 · · · R1IN

R2R1 R2R2 · · · R2IN

..

.

I1R1 I1R2 · · · I1IN

..

.

INR1 INR2 · · · ININ

3
777777775
: (4.9)

The relations of Eq. (4.7) can then be used to simplify this matrix.
A general result derived from Eq. (4.5) and the properties described above

holds for joint moments of circular complex Gaussian random variables
A1, A2, : : : , A2 k:

A�
1A

�
2 · · ·A

�
kAkþ1Akþ2 · · ·A2 k ¼

X
Π

A�
1ApA�

2Aq · · ·A�
kAr, (4.10)

where
P

Π represents a summation over the k! possible permutations
ðp, : : : , rÞ of ð1, 2, : : : , kÞ. This result will be called the complex Gaussian
moment theorem. For the special case of four of such variables (k ¼ 2),
we have

A�
1A

�
2A3A4 ¼ A�

1A3A�
2A4 þ A�

1A4A�
2A3: (4.11)
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and A2. The problem remains to integrate Eq. (4.21) to find the marginal
density functions of interest.

4.3.2 Joint density function of the amplitudes

To find the joint density function of the amplitudes A1 and A2, we integrate
Eq. (4.21) with respect to u1 and u2. To simplify the integration, first hold u2
constant and consider the integration with respect to u1. Because we are
integrating over one full period of the cos function, we can as well integrate a
new variable a ¼ fþ u1 � u2 over a full period of 2p rad. Thus the integral
becomes

pðA1, A2Þ ¼
Z

p

�p
du2

Z
p

�p
da

A1A2

4p2s2
1s

2
2ð1� m2Þ

� exp
�
�s2

2A
2
1 þ s2

1A
2
2 � 2A1A2s1s2m cosðaÞ

2s2
1s

2
2ð1� m2Þ

�
:

(4.22)

The integrals are readily performed, with the result

pðA1, A2Þ ¼
A1A2

s2
1s

2
2ð1� m2Þ exp

�
� s2

2A
2
1 þ s2

1A
2
2

2s2
1s

2
2ð1� m2Þ

	
I0

�
mA1A2

s1s2ð1� m2Þ
�
,

(4.23)

where I0 is again a modified Bessel function of the first kind, order zero, and
the result is valid for 0 ≤ A1, A2 ≤ `.

As a check on this result, we find the marginal density function of a single
amplitude, A1,

pðA1Þ ¼
Z

`

0
pðA1, A2Þ dA2 ¼

A1

s2
1

exp
�
� A2

1

2s2
1

	
, (4.24)

which is a Rayleigh density, in agreement with previous results.
Figure 4.1 illustrates the shape of the normalized joint density function

s1s2pðA1, A2Þ for various values of m. The figures on the right are contour
plots of the figures on the left. It can be seen that, as the correlation coefficient
increases, the joint density function approaches a shaped delta-function sheet
along the line A1 ¼ A2.

Another quantity of interest is the conditional density of A1, given that the
value of A2 is known. This density function is represented by pðA1jA2Þ and
can be found using Bayes’ rule,
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Chapter 7

Speckle in Certain Imaging
Applications

7.1 Speckle in the Eye

An interesting experiment can be performed with a group of people in a room
using a CW laser (even a small laser pointer will do if the beam is expanded a
bit and the lights are dimmed). Shine the light from the laser on the wall or on
any other planar rough scattering surface and ask the members of the group to
remove any eyeglasses they may be wearing (this may be difficult to do for
people with contact lenses, in which case they can continue to wear their
lenses). Ask all members of the group to look at the scattering spot and to
move their heads laterally left to right and right to left several times. Now ask
if the speckles in the spot moved in the same direction as their head movement
or in the opposite direction to their head movement. The results will be as
following:

• Individuals who have perfect vision or who are wearing their vision
correction will report that speckle motion was hard to detect. In effect,
the speckle structure appears fixed to the surface of the scattering spot
and does not appear to move with respect to the spot, but does undergo
some internal change that is not motion.

• Individuals who are farsighted and uncorrected will report that the
speckle moved in the same direction as their head moved, translating
through the scattering spot in that direction.

• Individuals who are nearsighted will report that the speckles move
through the scattering spot in the opposite direction to their head
movement.

Our goal in this section is to give a brief explanation of the results of this
experiment. For alternative but equivalent approaches to explaining this
phenomenon, see [11], [128], or [57], page 140.

Let the object consist of an illuminated scattering spot on a planar rough
surface, as shown in Fig. 7.1. Let the direction of illumination and the
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where the coherence with respect to a reference beam is high can be
distinguished from depth regions where that coherence has vanished.
Figure 7.4 illustrates one possible realization of an OCT system. The system
is a fiber-based Michelson interferometer. It operates by linearly scanning the
reference mirror in the axial direction to scan the region of high coherence
through the depth of the object, and scanning the mirror in the object arm to
move the region of measurement in the transverse direction across the object.
In this fashion a 2D scan of the object is obtained.2 The linear motion of the
reference mirror in effect Doppler shifts the reference light, and when the
reference and object beams are incident on the detector, a beat note is
observed when the light coming from the object is coherent with the light
coming from the reference mirror. Thus the amplitude of scattering from the
region of high coherence can be determined by measuring the strength of
the beat note. As the reference mirror scans, the scattering amplitudes from
the corresponding depth regions within the object are obtained.

7.3.2 Analysis of OCT

To understand the operation of OCT in more detail, we embark on a short
analysis. Incident on the detector are a reference wave and an object wave,
which we represent by analytic signals Er(t) and Eo(x, z, t), respectively,

Low-coherence
source

Reference
mirror

Axial
scanning

Coupler

Detector

Transverse 
scanning

Sample

Electronics Computer

Figure 7.4 A fiber-based interferometer for use in OCT. The axial scanning mirror changes
the path-length delay in the reference arm to select the axial depth, and the transverse
scanning mirror selects the transverse coordinates being imaged.

2Several different modes of scanning are possible. By analogy with ultrasound imaging modes,
a single vertical scan in the depth direction is referred to as an “A-scan,” while the combination
of scanning in depth and one transverse direction is referred to as a “B-scan.”
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7.5.2 Temporal speckle

The speckle phenomenon of concern here is not the usual speckle caused by
reflection of light from a rough surface, but rather the temporal intensity
fluctuations associated with light from a source with a coherence time that is
much longer than the coherence time of typical incoherent sources. The
authors of [160] have referred to this type of speckle as “dynamic” speckle.
Here we prefer to use the term “temporal speckle,” since “dynamic speckle”
has a different meaning in the field of speckle metrology.

As was discussed in some detail on page 262, the temporal fluctuations of
intensity of a polarized nonlaser source obey the same statistics in time that
conventional speckle obeys over space, namely the intensity obeys a negative-
exponential distribution. Therefore it is reasonable to call such fluctuations
“temporal speckle.” Most of the spatial properties of conventional speckle
also hold for the temporal properties of temporal speckle.

The energy to which the photoresist is subjected at any point consists of
the integrated light intensity contributed by the multiple pulses used for a
single exposure. There is a finite number of coherence times within that train
of pulses, and as a consequence there can remain residual fluctuations of
intensity associated with the integrated intensity. Consistent with the discussion
in the subsection beginning on page 99, for a single laser pulse with intensity
pulse shape PT (t), the number of degrees of freedom M1 is given by

M1 ¼

R

`�`
PTðtÞ dt

�
2R

`�`
KTðtÞjmAðtÞj2 dt

, (7.76)

and the contrast of time-integrated speckle from one pulse is given by

C ¼
hR

`�`
KTðtÞjmAðtÞj2 dt

i
1∕2

R
`�`

PTðtÞ dt
, (7.77)

where KT (t) is the autocorrelation function of PT (t).
In the present case, we take the spectrum of the laser, normalized to have

unity area, to be Gaussian, as in Eq. (7.24),

ĜðnÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
ln 2

p
ffiffiffiffi
p

p
Dn

exp
�
�
�
2

ffiffiffiffiffiffiffiffiffiffi
ln 2

p nþ n

Dn

�
2
	
, (7.78)

where Dn is again the full width at half maximum (FWHM) of the spectrum.
The squared magnitude of the complex coherence factor is

jmAðtÞj2 ¼ exp
�
�p2Dn2t2

2 ln 2

	
. (7.79)
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Chapter 9

Speckle and Metrology

One could argue whether speckle metrology is an imaging or a nonimaging
application of speckle. On the one hand, most speckle interferometry systems
have an imaging system that is used in gathering information. On the other
hand, it is not the image of the object that is really of interest; rather it is
information about mechanical properties of the object, such as movement,
vibration modes, or surface roughness, that is desired. For this reason, plus
the fact that speckle metrology is a well-developed field on its own, we have
chosen to have a separate chapter devoted to this subject. While speckle has
been a nuisance in almost all of the applications we have discussed previously,
in the field of metrology, speckle is put to good use. Applications that use
speckle for measurements of displacements arose in the late 1960s and early
1970s, often as an alternative to holographic interferometry. A number of
survey articles and books cover the subject extremely well, including [47], [57],
[45], [100], [167], and [146].

The field of speckle metrology has so many facets and so many
applications that it is difficult to do it justice in a single chapter. At best we
can only scratch the surface of such a rich and diverse field. We therefore
restrict our goals to introducing some of the basic concepts while referring the
reader to the more detailed treatments referenced above for a more in-depth
study and more complete bibliographies.

9.1 Speckle Photography

The term “speckle photography” refers to a variety of techniques that use
superposition of two speckle intensity patterns, one from a rough object in an
initial state and a second from the same object after it is subjected to some
form of displacement. Particularly important early work on speckle
photography includes that of Burch and Tokarski [25], Archibold, Burch
and Ennos [4], and Groh [88]. Figure 9.1 shows typical geometries for the
measurement. Part (a) of the figure shows the recording geometry. A diffusely
reflecting, optically rough surface is illuminated by coherent light. An imaging
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brings us to the fringe plane. A further Fourier transform of the fringe,
followed by a modulus operation, takes us to the final plane, where the
autocorrelation function of the specklegram is obtained. Figure 9.3 shows on
the left the fringe patterns obtained when the shift between speckle patterns is
16, 32, 64, and 128 pixels. On the right are the corresponding autocorrelation

Figure 9.3 Spectral fringe patterns on the left and specklegram autocorrelation functions on
the right for object translations of (a) 16 pixels, (b) 32 pixels, (c) 64 pixels, and (d) 128 pixels.
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Appendix A

Linear Transformations
of Speckle Fields

In this appendix we explore whether a linear transformation of a vector with
components consisting of circular complex Gaussian random variables yields
a new vector with components that are likewise circular complex Gaussian
random variables. Let the original vector be

A ¼

2
6664
A1
A2

..

.

AN

3
7775, (A.1)

where A1, A2, : : : , AN are known to be circular complex Gaussian random
variables. Consider a new vector A 0, defined by

A 0 ¼ LA, (A.2)

with

A 0 ¼

2
666664

A
0
1

A
0
2

..

.

A0
N

3
777775

(A.3)

and

L ¼

2
6664
L11 L12 : : : L1N
L21 L22 : : : L2N

..

. ..
. ..

.

LN1 LN2 : : : LNN

3
7775: (A.4)

The Gaussianity of the elements of the transformed matrix A 0 is
guaranteed by the fact that any linear transformation of Gaussian random
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