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Preface

Signal sampling is the major method for converting analog signals into sets of
numbers that form digital models of the signals. The key issues in the
sampling theory and practice are

– What is the minimal amount of numbers, or what is the minimal
sampling rate, sufficient to represent analog signals with a given
accuracy?

– What kinds of signal distortions are caused by their sampling?
– What signal attributes determine the minimal sampling rate?
– How can one sample signals with sampling rates close to the theoretical

minimum?
– Is it possible to resample sampled signals without introducing

additional distortions due to the resampling?
– What are adequate discrete representations of signal transforms, such

as convolution and Fourier transforms?

All of these issues are addresed in this book, supplemented by MATLAB® 

exercises, which you can download via the following link: http:/spie.org/
Samples/Pressbook_Supplemental/PM315_sup.zip

Researchers, engineers, and students will benefit from the most updated 
formulations of the sampling theory, as well as practical algorithms of signal 
and image sampling with sampling rates close to the theoretical minimum and 
interpolation-error-free methods of signal/image resampling, geometrical 
transformations, differentiation, and integration.

Leonid Yaroslavsky
December 2019
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Chapter 1

Introduction

1.1 A Historical Perspective of Sampling: From Ancient Mosaics
to Computational Imaging

It is easier to grasp a subject by tracing its evolution. Sampling as a
mechanism for image formation was first developed by nature in the form of
compound and retinal eyes (Figs. 1.1 and 1.2).

Light-sensitive cells (photoreceptors) of the eyes convert the luminosity of
small individual areas around different points of observed objects into signals
that are sent to the visual cortex of the brain, thus creating an object image.

At the dawn of human culture, ancient people discovered that small pieces
of glass, pottery, or small tiles placed together in an appropriate order create a
picture (Fig. 1.3). This led to the art of mosaic, which appeared throughout
the world. In Byzantium, from the 4th to 14th centuries, it became the leading
form of pictorial art.

Ancient artists knew how to intuitively choose the size of the tiles to make
good-quality mosaic pictures with the minimal number of tiles. They taught
their apprentices that skill; however, no “sampling theory” governed their
knowledge, and no need for such a theory existed.

Such a need arose with the creation of the first electrical communication
devices. Shortly after the early commercial success of telegraphy in the 1840s,
engineers attempted to send more than one signal over a single wire and over
increasingly larger distances. In 1854, the first transatlantic telegraph cable
project began.1 The first official telegram to pass between two continents was
a letter of congratulations from Queen Victoria of the United Kingdom to the
President of the United States, James Buchanan, on August 16, 1858.

However, the signal quality declined rapidly, slowing transmission to an
almost unusable speed. The Atlantic Telegraph Company’s chief electrician,
E. O. W. Whitehouse, decided that the reason for the low speed of
transmission was insufficiently high voltage, and so he applied excessive
voltage to the cable in the hope of achieving faster operation. The excessive
voltage destroyed the cable.1
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To explain and solve the problem, the company invited famous physicist
Sir William Thomson, who sought to apply his theory of heat propagation. In
particular, he used Fourier series to solve differential equations.

After accumulating sufficient experience in the transmission of telegraph
and, later, sound and image signals, communication engineers eventually
understood that the speed of information transmission is limited by the wave
bandwidth of communication channels. This is what one of the founders of
communication theory, Dennis Gabor, wrote in his seminal paper2 in 1944:

The principle that the transmission of a certain amount of information
per unit time requires a certain minimum wave-band width dawned
gradually upon communication engineers during the third decade
of this (20-th) century. Similarly, as the principle of conservation of
energy emerged from slowly hardening conviction of impossibility of
perpetuum mobile, this fundamental principle of communication

Figure 1.1 Anatomy and structure of compound eyes of insects.

Figure 1.2 The retinal eye of vertebrates.
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considerable popularity and initiated a steady flow of publications demonstrat-
ing its applicability in different applications.

Although it eventually turned out that the compressed sensing methods still
require certain redundancy in signal sampling, the concept of signal sparsity as
a generalization of the classic concept of signal-band limitations proved to be
very fruitful. It stimulated reformulation of the sampling theory in terms of
signal sparsity, the proof that signal sparsity defines the minimal signal
sampling rate sufficient for signal reconstruction with the accuracy that
corresponds to the level of its sparsity, and the demonstration that this minimal
sampling rate can be achieved using the means of computational imaging.12,13

1.2 Book Overview

The book is divided into two parts, supplemented with MATLAB-based
exercises. The first part (Chapters 2 to 7) is devoted to different aspects of
signal sampling.

Chapter 2 begins with the classic formulation (Section 2.1) of the sampling
theorem for 1D band-limited signals. It is then extended in Section 2.2 to
sampling 1D band-limited band-pass signals and, in Section 2.3, to band-
limited 2D signals, for which the concept of optimal 2D regular lattices is
introduced. Section 2.4 deals with sampling distortions, which take place
when sampling real, non-band-limited signals. In Section 2.5, a realistic re-
formulation of the sampling theorem is provided that does not assume the
band-limitedness of signals and is based on mathematical models of real signal
sampling and reconstruction devices, as well as the realization that no precise
signal reconstruction from a sampled representation is possible. The last two
sections of the chapter address, through two complementary approaches,
the problem of evaluating the minimal sampling rate sufficient for signal
reconstruction with a given accuracy. In Section 2.6, sampling of signal sub-
band decompositions is considered as a model of sampling with the minimal
sampling rate, and in Section 2.7, a formulation of the discrete sampling
theorem and its extension to continuous signals are provided for use in
Chapters 3 and 4.

Chapter 3 is devoted to demystifying the concept of compressed sensing.
First, in Section 3.1, the ubiquitous compressibility of images sampled using
the standard regular sampling methods is demonstrated and explained with
examples of sampled images. In Section 3.2, the concept of compressed
sensing is elucidated with a simple model that demonstrates how and under
what conditions can one precisely reconstruct a signal sampled with aliasing,
i.e., sampled by violating the sampling theorem. In Section 3.3, the sampling
redundancy required by compressed sensing methods for precise signal
reconstruction is estimated to evaluate how far these methods are from
reaching the minimal signal sampling rates.

5Introduction



Chapter 2
Sampling Theorems

2.1 Kotelnikov–Shannon Sampling Theorem: Sampling
Band-Limited 1D Signals

The Kotelnikov’s and Shannon’s classic formulation of the sampling theorem 
reads as follows.7,8

Theorem: If a function of time aðtÞ contains no frequencies higher than F∕2 
cycles per second (cps), it is completely determined by giving its ordinates at a
series of points spaced 1∕F seconds apart:

aðtÞ ¼
X̀
k¼�`

aðk∕FÞ sin½pFðt� k∕FÞ�
pFðt� k∕FÞ : (2.1)

The proof of this theorem is based on the properties of the integral Fourier
transform (Appendix A1). Let a( f ) be the Fourier spectrum of a(t):

að f Þ ¼
Z̀
�`

aðtÞ expði2pf tÞdt (2.2)

and

aðj f j . F∕2Þ ¼ 0,

i.e.,

aðtÞ ¼
Z̀
�`

að f Þ expð�i2pf tÞdf ¼
ZF∕2

�F∕2

að f Þ expð�i2pf tÞdf : (2.3)

In the interval [�F∕2, F∕2], the function a( f ) can be represented by its
Fourier series

að f Þ ¼ rect
�
f
F

� X̀
k¼�`

ak exp
�
i
2pkf
F

�
, (2.4)

where
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The sampling theorem implies that the number of samples of band-limited
signals with bandwidth [�F∕2, F∕2] per unit of signal length, i.e., the signal
sampling rate, equals F. This rate is called the Nyquist sampling rate, a name
that was coined by Shannon8 in recognition of Nyquist’s important
contributions to communication theory.

The Nyquist sampling rate F is the minimal sampling rate sufficient to
reconstruct band-limited signals from their samples. If the signal sampling
rate is lower than F, the period of the periodic spectrum replication due to
signal sampling will be lower than the spectrum width. Therefore, the signal
spectrum will overlap with its periodic replicas and cannot be separated by the
ideal low-pass filter without distortions.

2.2 Sampling 1D Band-Pass Signals

1D band-limited signals treated in the previous section are called baseband
signals. Their Fourier spectrum is concentrated within a bounded interval
[�F∕2, F∕2] around zero frequency. This interval is called the signal
baseband.

Figure 2.1 Interpretation of signal sampling to generate a virtual discrete signal with a
Fourier spectrum formed by the periodically replicated Fourier spectrum of the signal. From
top to bottom: a test signal, its Fourier spectrum, a virtual discrete signal comprising samples
of the test signal, and its Fourier spectrum.

14 Chapter 2



Figure 2.7 Moiré effect in sampling and reconstruction of a sinusoidal signal: (a) test signal
of frequency f 0 ¼ 0.4 (fraction of the sampling baseband width) and this signal sampled and
reconstructed; (b) spectra of the test and sampled test signals for the case where the
bandwidth of the reconstruction filter [�0.6, 0.6] exceeds the baseband [�0.5, 0.5] defined
by the signal sampling rate.
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2.7 The Discrete Sampling Theorem and Its Generalization to
Continuous Signals

2.7.1 Theorem formulation

This section supports the above formulated statement of the sampling
theorem that the minimal sampling rate of signals per unit of its size sufficient
for signal reconstruction with a given MSE s2 equals the size SSecz of the
signal spectral EC zone that contains a ðE � s2Þ∕E fraction of the signal
energy by an alternative approach based on the the discrete sampling theorem
and its generalization to continuous signals. This approach assumes direct
signal sampling and opens a way to practical algorithms that allow one to
reach the minimal rate.

Consider the following discrete model. Let AN be a vector of N samples
fakgk¼0,...,N�1 of a discrete signal, FN be an N �N orthonormal transform
matrix, composed of orthonormal basis functions fwrðkÞg

FN ¼ fwrðkÞgr¼0,1,...,N�1, (2.43)

and GN be a vector of signal transform coefficients fgrgr¼0,...,N�1 such that

AN ¼ FNGN ¼
�XN�1

r¼0

grwrðkÞ
	

k¼0,1,...N�1

: (2.44)

Assume that only K , N signal samples fak̃gk̃∈K̃ are available, where K̃ is a
K-size subset fk̃g of indices f0,1, .., N � 1g. These available K signal samples
define a system of K equations:

�
ak̃ ¼

XN�1

r¼0

grwrðk̃Þ
	

k̃∈K̃

(2.45)

for K signal transform coefficients fgrg of certain K indices r.
Select a subset R̃ of K transform coefficients indices fr̃ ∈ R̃g and define a

“KofN”-bounded spectrum approximation ÂðBSÞ
N to the signal AN as

ÂðBSÞ
N ¼

�
âk ¼

X
r̃∈R̃

gr̃wr̃ðkÞ
	
: (2.46)

Rewrite this equation in a more general form that involves all transform
coefficients:

ÂBS
N ¼

(
âk ¼

XN�1

r¼0

g̃rwrðkÞ
)
, (2.47)
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Chapter 3

Compressed Sensing
Demystified

3.1 Redundancy of Regular Image Sampling and Image Spectra
Sparsity

As mentioned previously, contemporary digital display devices and image
processing software imply by default that sampling over regular square
sampling lattices is used for image sampling. For such a sampling, the image
sampling interval ðDx, Dy ¼ DxyÞ is supposed to be chosen so that the square
sampling baseband [�1∕2Dxy ≤ f x ≤ 1∕2Dxy, �1∕2Dxy ≤ f y ≤ 1∕2Dxy] in the
image Fourier domain ð f x, f yÞ fully embraces the image spectrum EC zone
for the given accuracy of image reconsruction. This means that the area 1∕D2

xy

of this square zone, by necessity, exceeds the area of image spectrum EC zone,
which, by virtue of the general sampling theorem, defines the minimal
sampling rate sufficient for image reconstruction with the required MSE.
Threrefore, conventional regular image sampling is generally redundant. It
would be instructive to numerically evaluate this sampling redundancy of
sampled natural images.

Figure 3.1 presents a set of ten test images along with estimations of their
Fourier-spectrum EC zones. The Fourier spectra of the images were estimated
using the DFT as a discrete representation of the integral Fourier transform
(see Appendix A2). In order to avoid spectrum estimation errors due to
boundary effects as much as possible, images were multiplied before spectral
analysis by a circular apodization mask to smoothly bring them down to zero
at the edges of the sampled region. Highlighted in the figures of image spectra
are spectral EC zones that contain the largest image spectral components
sufficient for image reconstruction with the same MSE as that of the image
JPEG compression implemented by MATLAB.

These figures show that the spectral EC zones of all images occupy only a
fraction of the area of the sampling baseband. This fraction, i.e., the ratio of
the area of the image spectrum EC zone to the area of the sampling baseband,
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of the reconstructed signal DCT spectrum (the sixth plot) show that virtually
precise reconstruction of the signal is achieved after a couple of tens of
iterations: after 25 iterations, the reconstruction RMSE is 3.8� 10–5. Note
that in this example the signal spectrum sparsity is Ss ¼ 3∕256 � 1.2� 10�2,
and therefore the sampling redundancy (ratio of the sampling rate to signal
spectrum sparsity) is R ¼ M∕K ¼ 38∕3 ≅ 12.7.

When the signal sub-sampling rate is too low and aliasing is severe,
reliable detection of the signal spectral components in the spectrum of the

Figure 3.2 From top to bottom: test signal composed of three sinusoidal components; its
DCT spectrum; this signal randomly sub-sampled (stems) and reconstructed (solid line);
DCT spectrum of the sub-sampled signal; plot of the reconstruction RMSE vs. the number of
reconstruction iterations; and the DCT spectrum of the reconstructed signal. The frequency
is given in fractions of the width of the sampling baseband.
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Chapter 4

Image Sampling and
Reconstruction with Sampling
Rates Close to the Theoretical
Minimum

4.1 The ASBSR Method of Image Sampling and Reconstruction

This chapter describes a method of image sampling and reconstruction with
sampling rates close to the minimal rate defined by the sampling theory. We
begin with a formulation of a discrete model, for which the discrete sampling
theorem holds.

The theorem implies the following image sampling and reconstruction
protocol:

• Choose the number N of image samples required for image display and
processing.

• Choose an image sparsifying transform.
• Specify a desired spectrum energy compaction zone of the image

spectrum, i.e., a set of M≤N transform coefficients to be used for
image reconstruction.

• Measure M image samples.
• Use M image samples to determine M transform coefficients of the

chosen EC zone.
• Set the N�M transform coefficients to zero and use the obtained

spectrum to reconstruct the required N image samples by applying the
inverse transform to the formed signal spectrum.

Consider possible ways to implement this principle:
Choosing a transform. The choice of transform is governed by the

transform’s energy compaction capability, i.e., the ability to compact most of
the image signal energy into a small number of transform coefficients. An
additional requirement is the availability of a fast transform algorithm. From

51



Figure 4.5 Results of experiments on the sampling and reconstruction of test images.
From top to bottom: “AerialPhoto512,” “Barbara512,” “BloodVessels512,” and “Pirate1024.”
From left to right: reconstructed images; EC zones of image spectra (white dots) and borders
of the corresponding chosen-spectrum EC zone approximating shapes (white solid line);
plots of the RMSE of all (solid line) and of the smallest 90% (dashed line) reconstruction
errors vs. the number of iterations.
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Chapter 5

Signal and Image Resampling,
and Building Their Continuous
Models

5.1 Signal/Image Resampling as an Interpolation Problem;
Convolutional Interpolators

Many image processing applications must resample available digital images
in positions other than the original ones. Such applications include fusing
image data from different image modalities, building image mosaics from
many partly overlapped images, reconstructing images from projections,
producing image super-resolution from video sequences, stabilizing video
images distorted by atmosphere turbulence, locating targets, and tracking
with sub-pixel accuracy, to name a few.

Image resampling assumes that approximations of the original non-
sampled images are built by interpolating available image samples and then
resampling the obtained models in the required new positions. The most
feasible and amenable to optimization is signal interpolation by means of
digital convolution:

ãk ¼
XN�1

n¼0

hðintpÞn ak�n, (5.1)

where fãkg are samples of a signal obtained as a result of resampling the

initial signal samples fakg,
n
hðintpÞn

o
are samples of the interpolation filter

point spread function (PSF), and N is the number of available signal samples.
The problem of interpolating numerical data is one of the classic

mathematical problems that can be traced back to Babylonian times.22

Mathematical geniuses such as Newton, Euler, and Gauss contributed to its
solution. Presently, numerous interpolation methods are known. The most
popular in signal and image processing are convolutional methods, from the
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Section 5.4 will compare discrete sinc interpolation with other methods and
provide experimental evidence of its perfect performance and superiority.

5.3 Fast Algorithms of Discrete Sinc Interpolation and Their
Applications

5.3.1 Signal sub-sampling with DFT or DCT spectral zero-padding

One of the basic image resampling tasks is image sub-sampling (zooming in),
i.e., computing a set of intermediate samples from the given set of samples.
From properties of signal DFT spectra of sparse signals, discussed in
Appendix A2.9 (Eqs. (A2.47), (A2.48), (A2.50), and (A2.61)) it follows that
discrete sinc interpolated signal sub-sampling can be achieved by zero-
padding its DFT spectrum. Given the desired nomber N of the zoomed-in
signal samples and the number N0 of samples of the original signal, this
algorithm is described by the following equation:

ãk̃ ¼ IFFTNfDFT ZPN∕N0
½FFTN0

ðakÞ�g, (5.19)

where fakg, k ¼ 0, 1, : : : , N0 � 1 are the initial signal samples, fãk̃g are
zoomed-in signal samples, k̃ ¼ 0, 1, : : :N � 1, FFTN0

ð⋅Þ and IFFTNð⋅Þ are
N0-point direct and N-point inverse fast Fourier transform operators,
respectively, and DFT ZPN∕N0

[ ⋅ ] is a zero-padding operator. The zero-padding

Figure 5.2 Continuous (solid line) and discrete (solid stems) frequency responses of the
discrete sinc interpolator. Frequency indices are normalized by the width of the signal
sampling baseband.

77Signal and Image Resampling, and Building Their Continuous Models



Chapter 6

Discrete Sinc Interpolation
in Other Applications and
Implementations

6.1 Precise Numerical Differentiation and Integration of
Sampled Signals

6.1.1 Perfect digital differentiator and integrator

Signal numerical differentiation and integration are operations that require
measuring infinitesimal increments of signals and their arguments. Therefore,
the numerical computation of signal derivatives and integrals assumes the
building of “continuous” models of signals specified by their samples through
explicit or implicit interpolation between available signal samples.

Because differentiation and integration are shift-invariant linear operations,
methods of computing signal derivatives and integrals from their samples can
be conveniently designed and compared in the Fourier transform domain. Let
the Fourier transform spectrum of a continuous signal aðxÞ be að f Þ:

aðxÞ ¼
Z̀
�`

að f Þ expð�i2pf xÞdf : (6.1)

Then the Fourier spectrum of its derivative

d
dx

aðxÞ ¼
Z̀
�`

½ð�i2pf Það f Þ� expð�i2pf xÞdf (6.2)

will be ð�i2pf Það f Þ, and the Fourier spectrum of its integral

āðxÞ ¼
Z

aðxÞdx ¼
Z̀
�`

��
� 1
i2pf

�
að f Þ

�
expð�i2pf xÞdf (6.3)
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(for each position angle a of the point source) projections Prða, bÞ as a
function of the ray angles b. A set of projections for �p ≤ a ≤ p is then used
for image reconstruction.

In principle, inverting the RT in fan-beam projection geometry requires
reconstruction algorithms that work in fan-beam projection geometry. There is
however an alternative and attractive option of converting, by an appropriate
resampling, the set of fan projections into a set of parallel projections and to
enable in this way image reconstruction with algorithms for image reconstruc-
tion from parallel projections. For the resampling, one can use the above
described algorithms for resampling by image sub-sampling using global or
local discrete sinc interpolation. The latter can, if required, be combined with
denoising, as discussed in Section 6.2. This process of converting one type of
projection into another type is called data rebinning. Figure 6.12 illustrates this
method of image reconstruction.

6.4 Exercises

differentiator_comparison_SPIE.m

Comparison of signal differentiation accuracy of two conventional differ-
entiators with point spread functions

Figure 6.11 Geometry of image fan projections.
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Chapter 9

Discrete Representation
of the Convolution Integral

9.1 Discrete Convolution

In signal theory, the convolution integral

bðxÞ ¼
Z̀
�`

aðjÞhðx� jÞdj (9.1)

is a mathematical model of shift-invariant filtering signal aðxÞ by a linear filter
with point spread function (PSF) hðxÞ. A discrete representation of the
convolution intergral can be obtained by finding a relationship between samples

bk ¼
Z̀
�`

bðxÞPSF ðsÞðkDx � xÞdx (9.2)

of the convolution result bðxÞ with samples fang of the convolved signal aðxÞ.
Insert Eq. (9.1) in Eq. (9.2) and replace the former signal aðxÞ with its
expression (Eq. (8.2)) through its samples fang:

bk ¼
Z̀
�`

�Z̀
�`

aðjÞhðx� jÞdj
�
PSF ðsÞðkDx � xÞdx

¼
Z̀
�`

PSF ðsÞðkDx � xÞdx
�Z̀

�`

�X
n

anPSF ðrÞðj� nDxÞ
�
hðx� jÞdj

�

¼
X̀
n¼�`

an

Z̀
�`

Z̀
�`

hðj� xþ ðk � nÞDxÞPSF ðrÞðjÞPSF ðsÞðxÞdjdx

¼
X̀
n¼�`

anhk�n,

(9.3)
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Appendix 2

Discrete Fourier Transforms
and Their Properties

A2.1 Invertibility of Discrete Fourier Transforms and the Discrete Sinc
Function

Consider the general scaled shifted DFT of a signal with samples fakg

ar ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XN�1

n¼0

an exp
�
i2p

ñ r̃
dsNe

�
; ñ ¼ nþ u; r̃ ¼ rþ v (A2.1)

and show that its inverse is the transform

ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

r¼0

ar exp
�
�i2p

k̃ r̃
dsNe

�
; k̃ ¼ k þ u; r̃ ¼ rþ v: (A2.2)

Insert the expression Eq. (A2.1) for farg into Eq. (A2.2) to obtain

ak ¼
1ffiffiffiffiffiffiffiffiffiffiffiffidsNep XdsNe�1

r¼0

ar exp
�
�i2p

k̃ r̃
dsNe

�

¼ 1
dsNe

XdsNe�1

r¼0

�XN�1

n¼0

an exp
�
i2p

ñ r̃
dsNe

��
exp

�
�i2p

k̃ r̃
dsNe

�

¼ 1
dsNe

XN�1

n¼0

an
XdsNe�1

r¼0

exp
�
i2p

ðn� kÞ
dsNe ðrþ vÞ

�

¼
exp

h
i2p ðn�kÞ

dsNe v
i

dsNe
XN�1

n¼0

an
exp½i2pðn� kÞ� � 1

exp
�
i2p n�k

dsNe
�
� 1

169




