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Chapter 1 

Analytic Fourier Theory Review 

 

1.1 A Little History and Purpose 
 

The branch of optical science known today as “Fourier optics” had its genesis in 
the 1940s through the 1960s with the application of new telecommunications and 
circuit design analysis techniques in optical diffraction theory.1 In 1968 this 
upstart discipline was given a permanent foothold with the publication of 
Introduction to Fourier Optics, by Joseph W. Goodman, a seminal textbook that 
explained and united the fundamental concepts, and which continues to add 
significantly to the application of Fourier optics in subsequent editions.2 Fourier 
optics is now the cornerstone for the analysis of diffraction, coherence, and 
imaging, as well as specialized topics such as wavefront control, propagation 
through random media, and holography. 

The study of Fourier optics today leads naturally toward the computer for at 
least two reasons: (1) diffraction integral expressions are difficult to solve 
analytically for all but a few of the simplest aperture functions, and (2) the fast 
Fourier transform (FFT) algorithm combined with the linear systems framework 
of Fourier optics provides an extremely efficient computational approach for 
solving wave optics problems.  

Certainly, the computer can be applied directly in finding exceedingly 
accurate solutions to diffraction problems using numerical integration 
techniques.3 However, this book is really about the FFT and how to apply it to a 
variety of Fourier optics problems. The computer coding steps mirror the analytic 
concepts and the FFT’s speed makes it possible to perform thousands of optical 
propagation or imaging simulations in a reasonable amount of time. In fact, the 
methods explored in this book form the basis for wave (or physical) optics 
simulation tools that are widely used in industry. But, of course, there’s no free 
lunch (…if there were, perhaps we could be eating while studying Fourier 
optics...). It turns out the FFT is an accomplice to various numerical artifacts. We 
do our best in this book to expose these issues and provide constraints to help 
minimize the damage. 

This is also a tutorial text with step-by-step instructions, not only for coding 
Fourier optics problems, but also for MATLAB, our software application of 
choice. So, if you are new to MATLAB, don’t worry! Chapter 3 starts at the 
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beginning (“Open MATLAB”) and leads you through the basics of working with 
the FFT. By the end of the book you will be programming diffraction problems 
involving partially coherent light—at least that’s the goal! Exercises at the end of 
the chapters give you room to tinker with the programs and stretch out with your 
own code. 

It is assumed the reader has some familiarity with Fourier optics. Presenting 
the topic from the ground up is too much material to cover and would obscure 
our purpose. However, the analytic theory required is presented in summary form 
throughout the text. The notation and form closely follow Goodman’s 
presentation in Introduction to Fourier Optics.2 For further details and 
explanations of the analytic foundations of Fourier theory and Fourier optics the 
reader is encouraged to consult Goodman’s book as well as the many other 
excellent references that exist on the topic.4–7 

1.2 The Realm of Computational Fourier Optics 

In this book, the variables, vectors, and arrays in the computer code are defined 
as much as possible in terms of physical quantities. For example, the coordinates 
of samples in an array that models a spatial plane are defined in units of meters. 
Integers for indexing arrays show up only when they can’t be avoided. This 
approach allows a clear connection between the physical world being modeled 
and the computer code. MATLAB’s vectorized structure is also suited to this 
approach. Thus, programming examples presented in the book involve specific 
aperture sizes, wavelengths, and distances. Although some examples are simply 
academic, others are something one might encounter in the real world. However, 
the reader will soon notice an emergent theme: the finite size of the sample array 
in the computer limits the range of parameters that can be considered. 

We might consider this difficulty in light of the optical designer’s dilemma: 
When does one transition between a geometrical optics prediction of system 
performance and a wave optics prediction? The difference between these 
predictors is that geometrical optics assumes rectilinear (straight-line) 
propagation of the rays of light and ignores diffractive spreading due to the wave 
nature of light. The usual answer for the dilemma is that for small departures 
from perfection (near the “diffraction limit”) a wave optics description is needed. 
For large departures a geometrical ray optics description, which has more flexible 
implementation options, is adequate.8,9 

So, although analytic Fourier optics theory is quite general, the finite array 
size tends to limit the computer modeling to the “near-perfection” situations. 
Typically, this means small divergence angles for optical beam propagation, 
small simulated image area, and so forth. For practical applications, this is the 
same realm as the wave optics performance prediction for optical system design. 

The remainder of this chapter is a summary of the fundamental Fourier 
transform definitions, theorems, basic functions, and transform pairs. A review of 
linear systems theory is also included. So, let’s go! 
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1.3 Fourier Transform Definitions and Existence 

Fourier optics problems often involve two spatial dimensions. The analytic 
Fourier transform of a function g of two variables x and y is given by 
 

    , ( , )exp 2πX Y X YG f f g x y j f x f y dxdy




      , (1.1) 

 
where G(fX , fY) is the transform result and fX and fY are independent frequency 
variables associated with x and y, respectively. This operation is often described 
in a shorthand manner as   ),(),( YX ffGyxg  . Similarly, the analytic inverse 
Fourier transform is given by 
 

    , ( , )exp 2πX Y X Y X Yg x y G f f j f x f y df df




      . (1.2) 

 
The shorthand notation for this operation is   ).,(),(1 yxgffG YX 

 
For the Fourier transform to be realizable in a mathematical sense, g(x,y) 

must satisfy certain sufficient conditions. These conditions are commonly listed 
as: 

 (a) g must be absolutely integrable over the infinite range of x and y; 

 (b) g must have only a finite number of discontinuities; and 

 (c) g must have no infinite discontinuities. 

Goodman2 illustrates that in a number of important cases, one or more of these 
conditions can be weakened, and a generalized transform approach using 
idealized mathematical functions can be employed to find useful transform 
representations. Some generalized transform results of interest include 

  1 ( , )X Yf f  , 

    1 1
0 0 02 2cos 2π ( , ) ( , )X Y X Yf x f f f f f f      , 

where  is the Dirac delta function. 

1.4 Theorems and Separability 

The theorems listed in Table 1.1 find considerable application in Fourier 
analysis. In Table 1.1, A, B, a, and b are scalar constants. 

An important property of certain functions is separability. A two-
dimensional (2D) function is separable if it can be written as the product of two 
functions of a single variable, such as 
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      ygxgyxg YXS , . (1.3) 
 
Separability reduces the Fourier transform of a 2D function to the product of two 
one-dimensional (1D) transforms or  
 
         ygxgyxg YXS  , . (1.4) 

 
Table 1.1 Fourier transform theorems. 

 

Theorem Expression 

Linearity           yxhByxgAyxBhyxAg ,,,,   

Similarity  YX bfafGab
b

y

a

x
g ,, 















  

Shift      ( , ) , exp 2πX Y X Yg x a y b G f f j f a f b         

Parseval’s 
(Rayleigh’s)   YXYX dfdfffGdxdyyxg

22
),(),(  

Convolution  ( , ) ( , ) ( , ) ( , )X Y X Yg h x y d d G f f H f f          

Autocorrelation    2
( , ) ( , ) ( , )X Yg g x y d d G f f          

 2
( , ) ( , ) ( , )X Yg x y G G f f d d          

Cross-correlation  ( , ) ( , ) ( , ) ( , )X Y X Yg h x y d d G f f H f f         
      ddffHGyxhyxg YX ),(),(),(),(  

Fourier integral     ),(),(),( 11 yxgyxgyxg    

Successive 
transform 

  ),(),( yxgyxg   

Central ordinate    

 dxdyyxgGyxg

Y

X
f
f ),()0,0(),(

0
0  

   




YXYX

y
xYX dfdfffGgffG ),()0,0(),(

0
0

1  

Note: A, B, a, and b are scalar constants 
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1.5 Basic Functions and Transforms 

Several basic functions, or combinations thereof, are used to describe various 
physical or analytic structures encountered in optics, such as a circle function to 
describe a circular aperture. Thus, these functions and their Fourier transform 
pairs are of considerable utility. The definitions in Table 1.2 are adopted. 
 Functions of one variable are illustrated in Fig. 1.1. These can be combined 
as products to represent separable 2D functions. The circle function is a 
symmetric 2D function where a single radial variable r = (x2+y2)1/2 is often used. 
A shorthand name is not defined for the Gaussian, but this function appears 
often. The form we use is convenient for Fourier analysis. The circle and a 2D 
Gaussian function are plotted in Fig. 1.2 for illustration. 
 

Table 1.2 Basic functions. 
 

Function Definition 

Rectangle 

1
1,

2
1 1

rect( ) ,
2 2
0, otherwise

x

x x

 

 




 

Sinc 
sin(π )

sinc( )
π

x
x

x
  

Triangle 
1 , 1,

( )
0, otherwise.

x x
x

    


 

Comb 





n

nxx )()(comb   

Gaussian  2exp πx  

Circle  

2 2

2 2 2 2

1
1 ,

2
1 1

circ ,
2 2
0 otherwise.

x y

x y x y

  

   




 

 


