Presentation
19 September 2017 Quantum nanophotonics (Conference Presentation)
Jelena Vuckovic, Jingyuan Zhang
Author Affiliations +
Abstract
Nanophotonic structures that localize photons in sub-wavelength volumes are possible today thanks to modern nanofabrication and optical design techniques. Such structures enable studies of new regimes of light-matter interaction, quantum and nonlinear optics, and new applications in computing, communications, and sensing. The traditional quantum nanophotonics platform is based on InAs quantum dots inside GaAs photonic crystal cavities, but recently alternative material systems based on color centers in diamond and silicon carbide have emerged, which could potentially bring the described experiments to room temperature and facilitate scaling to large networks of resonators and emitters. Additionally, the use of inverse design nanophotonic methods that can efficiently perform physics-guided search through the full parameter space, leads to optical devices with properties superior to state of the art, including smaller footprints, better field localization, and novel functionalities.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jelena Vuckovic and Jingyuan Zhang "Quantum nanophotonics (Conference Presentation)", Proc. SPIE 10343, Metamaterials, Metadevices, and Metasystems 2017, 103432G (19 September 2017); https://doi.org/10.1117/12.2279813
Advertisement
Advertisement
Back to Top