Paper
13 May 2019 Quantum knots and knotted zeros
Author Affiliations +
Abstract
In 2001, Michael Berry4 published the paper ”Knotted Zeros in the Quantum States of Hydrogen” in Foundations of Physics. In this paper we show how to place Berry’s discovery in the context of general knot theory and in the context of our formulations for quantum knots. Berry gave a time independent wave function for hydrogen, as a map from three space R3 to the complex plane and such that the inverse image of 0 in the complex plane contains a knotted curve in R3. We show that for knots in R3 this is a generic situation in that every smooth knot K in R3 has a smooth classifying map f : R3 −→ C (the complex plane) such that f−1(0) = K. This leaves open the question of characterizing just when such f are wave-functions for quantum systems. One can compare this result with the work of Mark Dennis and his collaborators and with the work of Lee Rudolph. Our approach provides great generality to the structure of knotted zeros of a wavefunction and opens up many new avenues for research in the relationships of quantum theory and knot theory. We show how this classifying construction can be related our previous work on two dimensional and three dimensional mosaic and lattice quantum knots.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Louis H. Kauffman and Samuel J. Lomonaco Jr. "Quantum knots and knotted zeros", Proc. SPIE 10984, Quantum Information Science, Sensing, and Computation XI, 109840A (13 May 2019); https://doi.org/10.1117/12.2518685
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Quantization

Quantum physics

Optical spheres

Quantum computing

Quantum information

Physics

Vector spaces

Back to Top