Paper
1 October 1990 High-temperature sapphire optical sensor fiber coatings
Seshu B. Desu, Richard O. Claus, Ruby Raheem, Kent A. Murphy
Author Affiliations +
Abstract
Advanced coal-fired power generation systems, such as pressurized fluidized-bed combustors and integrated gasifier-combined cycles, may provide cost effective future alternatives for power generation, improve our utilization of coal resources, and decrease our dependence upon oil and gas. When coal is burned or converted to combustible gas to produce energy, mineral matter and chemical compounds are released as solid and gaseous contaminants. The control of contaminants is mandatory to prevent pollution as well as degradation of equipment in advanced power generation. To eliminate the need for expensive heat recovery equipment and to avoid efficiency losses it is desirable to develop a technology capable of cleaning the hot gas. For this technology the removal of particle contaminants is of major concern. Several prototype high temperature particle filters have been developed, including ceramic candle filters, ceramic bag filters, and ceramic cross-flow (CXF) filters. Ceramic candle filters are rigid, tubular filters typically made by bonding silicon carbide or alumina-silica grains with clay bonding materials and perhaps including alumina-silica fibers. Ceramic bag filters are flexible and are made from long ceramic fibers such as alumina-silica. CXF filters are rigid filters made of stacks of individual lamina through which the dirty and clean gases flow in cross-wise directions. CXF filters are advantageous for hot gas cleanup applications since they offer a large effective filter surface per unit volume. The relatively small size of the filters allows the pressurized vessel containing them to be small, thus reducing potential equipment costs. CXF filters have shown promise but have experienced degradation at normal operational high temperatures (close to 1173K) and high pressures (up to 24 bars). Observed degradation modes include delamination of the individual tile layers, cracking at either the tile-torid interface or at the mounting flange, or plugging of the filter. These modes may be attributed to a number of material degradation mechanisms, such as thermal shock, oxidation corrosion of the material, mechanical loads, or phase changes in the filter material. Development of high temperature optical fiber (sapphire) sensors embedded in the CXF filters would be very valuable for both monitoring the integrity of the filter during its use and understanding the mechanisms of degradation such that durable filter development will be facilitated. Since the filter operating environment is very harsh, the high temperature sapphire optical fibers need to be protected and for some sensing techniques the fiber must also be coated with low refractive index film (cladding). The objective of the present study is to identify materials and develop process technologies for the application of claddings and protective coatings that are stable and compatible with sapphire fibers at both high temperatures and pressures.
© (1990) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Seshu B. Desu, Richard O. Claus, Ruby Raheem, and Kent A. Murphy "High-temperature sapphire optical sensor fiber coatings", Proc. SPIE 1307, Electro-Optical Materials for Switches, Coatings, Sensor Optics, and Detectors, (1 October 1990); https://doi.org/10.1117/12.21641
Lens.org Logo
CITATIONS
Cited by 11 scholarly publications and 3 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sapphire

Optical coatings

Cladding

Ceramics

Optical filters

Fiber coatings

Sensors

Back to Top