Paper
1 July 1992 Performance of erbium-doped fiber optical power amplifiers pumped in the 800-nm band
Balakrishnan Sridhar, Steven P. Bastien, Harish R. Sunak, Vasilios E. Kalomiris
Author Affiliations +
Abstract
We use a comprehensive computer model to evaluate the performance of erbium doped optical power amplifiers (EDFA) in the 800 nm band. The pump wavelength dependence of the amplifier gain and noise is considered for aluminophosphate (APS-EDFA) and fluorophosphate (FP-EDFA). The existence of band optimum length, where the output remains constant and close to the peak output for a pump band, has been shown for both APS-EDFA and FP-EDFA under saturated conditions. It has been shown that band optimum length exists for both APS-EDFA and FP-EDFA unlike in the case of small signal gain, where the BOL existed only for APS-EDFA. The influence of the signal excited state absorption (ESA) at various pump powers and wavelengths is studied. The performance of power EDFAs with a pump reflecting mirror has been compared with bidirectional pumping and co-directional pumping for both APS-EDFA and FP-EDFA. For small pump powers (Pp approximately equals 10 mW) the configuration with pump reflecting mirror is better than bi-directional pumping, both in terms of large signal gain and noise figure (NF) for APS-EDFA and FP-EDFA. At large pump powers (Pp approximately equals 200 mW) the output signal powers are comparable and the NF is better for the configuration with the reflecting mirror for APS-EDFA. The signal gain and noise performance is better in the case of FP-EDFA even at Pp equals 200 mW.
© (1992) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Balakrishnan Sridhar, Steven P. Bastien, Harish R. Sunak, and Vasilios E. Kalomiris "Performance of erbium-doped fiber optical power amplifiers pumped in the 800-nm band", Proc. SPIE 1679, Physics and Simulation of Optoelectronic Devices, (1 July 1992); https://doi.org/10.1117/12.60485
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical amplifiers

Absorption

Interference (communication)

Curium

Mirrors

Fiber amplifiers

Physics

Back to Top