Paper
10 April 1995 Laser-ablation-plume thermalization dynamics in background gases studied by time-resolved imaging, spectroscopic, and ion probe diagnostics
Author Affiliations +
Abstract
A combination of fast plasma diagnostics are utilized to probe the propagation of laser ablation plumes in vacuum and low-pressure background gases in order to understand key gas dynamic processes relevant to film growth by pulsed laser deposition. During expansion into low-pressure background gases, the ion flux in the plasma plume splits into fast and slow components over a limited range of distances and times. This general effect is presented here for the case of yttrium ablation into argon, a single-element target into an inert gas. Time- resolved optical absorption spectroscopy and optical emission spectroscopy are employed to simultaneously view the populations of both excited and ground states of Y and Y+ for comparison with intensified-CCD photography of the visible plume luminescence and ion flux measurements made with fast ion probes during this phenomenon. These measurements indicate that plume-splitting in background gases is consistent with momentum transfer from an initial, vacuum velocity distribution into a second, slowed velocity distribution initiated by scattering collisions between plume and background gas atoms. The fast distribution is exponentially attenuated in accordance with Beer's law, and the second, slowed distribution coalesces into a stable, propagating shock structure.
© (1995) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
David B. Geohegan and Alexander A. Puretzky "Laser-ablation-plume thermalization dynamics in background gases studied by time-resolved imaging, spectroscopic, and ion probe diagnostics", Proc. SPIE 2403, Laser-Induced Thin Film Processing, (10 April 1995); https://doi.org/10.1117/12.206256
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Ions

Argon

Yttrium

Gases

Luminescence

Absorption

Plasma

Back to Top