Paper
28 May 1997 Comparison between holographic interferometry and high-speed videography techniques in the study of the reflection of plane shock waves
Filipe Jose Barbosa, Beric W. Skews
Author Affiliations +
Proceedings Volume 2869, 22nd International Congress on High-Speed Photography and Photonics; (1997) https://doi.org/10.1117/12.273361
Event: 22nd International Congress on High-Speed Photography and Photonics, 1996, Santa Fe, NM, United States
Abstract
Double exposure holographic interferometry and high speed laser shadowgraph photography and videography are used to investigate the mutual reflection of two plane shock waves. Normally research on the transition from regular to Mach reflection is undertaken by allowing a plane shock wave to impinge on a wedge. However due to the boundary layer growth on the wedge, regular reflection persists at wedge angles higher than that allowed for by inviscid shock wave theory. Several bifurcated shock tubes have been constructed, wherein an initially planar shock wave is split symmetrically into two and then recombined at the trailing edge of a wedge. The plane of symmetry acts as an ideal rigid wall eliminating thermal and viscous boundary layer effects. The flow visualization system used needs to provide high resolution information on the shockwave, slipstream, triple point and vortex positions and angles. Initially shadowgraph and schlieren methods, with a Xenon light source, were used. These results, while proving useful, are not of a sufficient resolution to measure the Mach stem and slipstream lengths accurately enough in order to determine the transition point between regular and Mach reflection. To obtain the required image resolution a 2 joule double pulse ruby laser, with a 30 ns pulse duration, was used to make holographic interferograms. The combined advantages of holographic interferometry and the 30 ns pulse laser allows one to obtain much sharper definition, and more qualitative as well as quantitative information on the flow field. The disadvantages of this system are: the long time taken to develop holograms, the difficulty of aligning the pulse laser and the fact that only one image per test is obtained. Direct contact shadowgraphs were also obtained using the pulse ruby laser to help determine triple point trajectory angles. In order to provide further information a one million frames per second CCD camera, which can take up to 10 superimposed images, was used to obtain multiple focussed shadowgraphs. Although limited resolution is obtained, due to the low resolution of the camera, information is obtained about the time evolution, and validity of the self similar assumption, of the shock wave structure. This paper highlights the practical implementation of, and the results obtained, using the above mentioned techniques in order to further explain the transition from regular to Mach reflection, as well as to describe the interaction of unsynchronized shock waves at the apex of a wedge. The advantages and disadvantages of each system are discussed as well as the benefits of using these different optical systems in conjunction with each other, to obtain a more complete description of the shock wave interaction.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Filipe Jose Barbosa and Beric W. Skews "Comparison between holographic interferometry and high-speed videography techniques in the study of the reflection of plane shock waves", Proc. SPIE 2869, 22nd International Congress on High-Speed Photography and Photonics, (28 May 1997); https://doi.org/10.1117/12.273361
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Reflection

Cameras

Holographic interferometry

Light sources

Visualization

Photography

Ruby lasers

Back to Top