Paper
11 August 1997 Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface
Anatoli V. El'tsov, Vladimir I. Karasev, Vjacheslav V. Kolotkov, Timofei V. Kondranin
Author Affiliations +
Proceedings Volume 3200, Third Conference on Photonic Systems for Ecological Monitoring; (1997) https://doi.org/10.1117/12.284720
Event: Third Conference on Photonic Systems for Ecological Monitoring, 1996, Prague, Czech Republic
Abstract
The sharp increase of the man-induced pressure on the environment and hence the need to predict and monitor natural anomalies makes global monitoring of the ecosphere of planet Earth an issue of vital importance. The notion of the ecosphere covers three basic shells closely interacting with each other: the near-Earth space, the atmosphere and the Earth surface. In the near-Earth space (covering 100 to 2000 km altitudes) the primary objects of monitoring are: functioning artificial space objects, the fragments of their constructions or space rubbish (which by estimation amounts to 3.5 million pieces including 30,000 to 70,000 objects having dimensions sufficient for heavy damaging or even destroying functioning space objects) and objects of space origin (asteroids, meteorites and comets) whose trajectories come closely enough to the Earth. Maximum concentrations of space rubbish observed on orbits with altitudes of 800, 1000 and 1500 km and inclinations of 60 to 100 deg. are related in the first place to spacecraft launch requirements. Taking into account the number of launches implemented by different countries in the framework of their own space programs the probability of collision of functioning spacecraft with space rubbish may be estimation increase from (1.5 - 3.5)% at present to (15 - 40)% by 2020. Besides, registration of space radiation flow intensity and the solar activity is no less important in this space area. Subject to control in the atmosphere are time and space variations in temperature fields, humidity, tracing gas concentrations, first of all ozone and greenhouse gases, the state of the cloud cover, wind velocity, etc. The range of objects to be under environmental management of Earth surface is just as diverse and essentially should include the state of the surface and the near-surface layer of seas and oceans, internal reservoirs, the cryosphere and the land surface along with vegetation cover, natural resources and human activities. No matter how large the space (from several meters to hundreds of kilometers) and time (from an hour to several months) scales of the above monitoring might be there is a common dominating factor which could favor creation of a general- purpose observation and control system based on passive optoelectronic instrumentation of different levels of sophistication. This dominating factor refers to the possibility of obtaining information about the state of objects by way to recording parameters of radiation emitted by them in wavelengths of 250 nm to tens of microns. The fact that phenomena and processes occurring in the atmosphere are closely interrelated gives implications as to the structure of such a system which is supposed to be a common information network basically consisting of an orbiting constellation of a number of small-size spacecraft equipped with optoelectronic instrumentation of different complexity, and a ground segment to provide acquisition and processing of information about the status of every ecosphere shell including comprehensive thematic analysis. The existing domestic (based on the `Meteor', `Resurs-O', `Okean', etc. spacecraft) and foreign (NOAA, SPOT, LANDSAT, ERS, etc.) space systems are designed for solution of only a limited number of atmosphere monitoring issues, namely those related to meteorology and studies of natural resources. As for the near-Earth space there are at present only ground facilities whose monitoring capabilities are also limited. It should be noted that in recent years in the USA similar activities have been in full swing targeted at creation of a system like the one mentioned above (the Earth Observation System). A system comprising four spacecraft of the NOAA series and a distributed ground network for receiving analog (with 4 km spatial resolution) and digital (with 1 km spatial resolution) multispectral data pertaining to the status of the atmosphere and the underlying surface is currently operational. This system presents some unique features which make it in several applications superior to existing counterparts. The issue of creation and use of similar systems is complex and costly and it can be solved under today's Russian circumstances only at government level by joint efforts of multiple scientific and production organizations. One advantageous approach consists in building the above-mentioned systems using space complexes which have been already developed or are under development.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Anatoli V. El'tsov, Vladimir I. Karasev, Vjacheslav V. Kolotkov, and Timofei V. Kondranin "Concept of a space optoelectronic system for environmental monitoring of the near-earth space, atmosphere, and earth surface", Proc. SPIE 3200, Third Conference on Photonic Systems for Ecological Monitoring, (11 August 1997); https://doi.org/10.1117/12.284720
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
Back to Top