Paper
3 June 2002 Hybrid-integrated optical isolators and circulators
Author Affiliations +
Abstract
Magneto-optics is an area that is uniquely enabling for the production of nonreciprocal components such as optical isolators and circulators. The concepts behind the nonreciprocity include nonreciprocal polarization rotation (Faraday rotation) and nonreciprocal phase shift. A magneto- optic material that is magnetized in the direction of propagation of light acts as a Faraday rotator. An asymmetric magneto-optic waveguide that is magnetized perpendicular to the propagation direction acts as a nonreciprocal phase shifter. Both effects can be utilized to realize nonreciprocal devices. Today, commercial isolators and circulators are strictly bulk components, and as such they constitute the only type of optical component that is not available in integrated form. However, the technology for integrated nonreciprocal devices has been maturing and is expected to have a considerable impact in the communication industry by enabling the integration of complete optical subsystems. We report on the development of integrated optical isolators and circulators that consist of polymer-based planar interferometers with inserted thin films of cerium-substituted Yttrium Iron Garnet (Ce-YIG) for efficient Faraday rotation, and thin films of LiNbO3 for wave-retarders that enable polarization-independent operation.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Junichiro Fujita, Reinald Gerhardt, and Louay A. Eldada "Hybrid-integrated optical isolators and circulators", Proc. SPIE 4652, Optoelectronic Interconnects, Integrated Circuits, and Packaging, (3 June 2002); https://doi.org/10.1117/12.469582
Lens.org Logo
CITATIONS
Cited by 11 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Waveguides

Optical isolators

Polymers

Polarization

Thin films

Garnet

Iron

RELATED CONTENT


Back to Top