Paper
1 September 2005 Construction of surface boundary conditions for regional climate modeling in China by using the remote sensing data
Author Affiliations +
Abstract
The continuing rise in atmospheric CO2 is considered as a main cause of the future changes in global climate. Predicted climate changes include an increase in mean annual air temperature and alterations in precipitation pattern and cloud cover. Elevated atmospheric CO2 and climate changes are expected to influence the ecosystems. The regional climate models (RCMs) will likely remain primary tools for climate prediction in the foreseeable future. The importance of RCMs is increasing in addressing scientific problems associated with climate variability, changes, and impacts at regional scales. The RCMs have been also used in climate impact studies on ecosystems, especially in agricultural crops by generating climate scenarios for input to crop models. With a large volume of satellite remote sensing data of the earth terrestrial surface becoming available, precisely monitoring the dynamics of the land surface state variables for agricultural and land use management becomes possible6. With the effort to study the climate crop interactions we plan to use a CWRF model (a climate extension of the Weather Research and Forecasting model-WRF) developed by the Illinois State Water Survey to form the climate scenarios. The WRF model is based upon the most advanced supercomputing technologies and promises greater efficiency in computation and flexibility in new module incorporation. This extension inclusively incorporates all WRF functionalities for numerical weather predictions while enhancing the capability for climate applications. To represent the surface-atmosphere interactions the CWRF requires specification of surface boundary conditions (SBCs) over both land and oceans. A comprehensive set of SBCs based on best observational data is desired for CWRF general applications for all effective, dynamically coupled or uncoupled, combinations of the surface modules, as well as for any specific region of the world. This report followed the approach of Liang et al. presents a preliminary work to construct vegetative SBCs for the CWRF modeling effort in China domain by using remote sensing data from TM, AVHRR, MODIS which are freely available. The full list of the CWRF SBCs was defined by Liang.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wei Gao, Zhiqiang Gao, Hyun I. Choi, Min Xu, and James Slusser "Construction of surface boundary conditions for regional climate modeling in China by using the remote sensing data", Proc. SPIE 5884, Remote Sensing and Modeling of Ecosystems for Sustainability II, 588413 (1 September 2005); https://doi.org/10.1117/12.620149
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Climatology

Data modeling

Remote sensing

Climate change

Environmental sensing

Vegetation

Ecosystems

Back to Top