Paper
14 April 2010 New biometric modalities using internal physical characteristics
Author Affiliations +
Abstract
Biometrics is described as the science of identifying people based on physical characteristics such as their fingerprints, facial features, hand geometry, iris patterns, palm prints, or speech recognition. Notably, all of these physical characteristics are visible or detectable from the exterior of the body. These external characteristics can be lifted, photographed, copied or recorded for unauthorized access to a biometric system. Individual humans are unique internally, however, just as they are unique externally. New biometric modalities have been developed which identify people based on their unique internal characteristics. For example, "BoneprintsTM" use acoustic fields to scan the unique bone density pattern of a thumb pressed on a small acoustic sensor. Thanks to advances in piezoelectric materials the acoustic sensor can be placed in virtually any device such as a steering wheel, door handle, or keyboard. Similarly, "Imp-PrintsTM" measure the electrical impedance patterns of a hand to identify or verify a person's identity. Small impedance sensors can be easily embedded in devices such as smart cards, handles, or wall mounts. These internal biometric modalities rely on physical characteristics which are not visible or photographable, providing an added level of security. In addition, both the acoustic and impedance methods can be combined with physiologic measurements such as acoustic Doppler or impedance plethysmography, respectively. Added verification that the biometric pattern came from a living person can be obtained. These new biometric modalities have the potential to allay user concerns over protection of privacy, while providing a higher level of security.*
© (2010) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Juliana (Brooks) Mortenson "New biometric modalities using internal physical characteristics", Proc. SPIE 7667, Biometric Technology for Human Identification VII, 76670N (14 April 2010); https://doi.org/10.1117/12.847882
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Biometrics

Acoustics

Bone

Tissues

Transducers

Ultrasonography

Sensors

Back to Top