Presentation
3 June 2022 Zooming in on Fermi gases in two dimensions
Author Affiliations +
Abstract
Interacting Fermi systems in two dimensions display intriguing phenomena such as high temperature superfluidity and pseudogap physics. These features emerge from the collective behavior of the constituent particles but are extremely hard to predict from microscopic theory. I will report on experiments that realize microscopic two-dimensional systems with ultracold fermionic lithium atoms. With the ability to deterministically prepare few-body ground states and to observe individual particles in momentum space, they enable a microscopic view of strongly interacting two-dimensional Fermi systems. Surprisingly, we find that characteristic features of many-body Fermi gases can already be found in systems of no more than a dozen particles: In spectroscopy, we observe collective excitations that are the few-body precursor of the Higgs amplitude mode of a superfluid. Moreover, in spin-resolved momentum space probes, we can directly image individual ‘Cooper pairs’ and show the presence of fermionic pairing even in a microscopic setting. These findings may broaden our understanding of finite-size Fermi systems, such as atomic nuclei and superconducting grains.
Conference Presentation
© (2022) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Philipp Preiss "Zooming in on Fermi gases in two dimensions", Proc. SPIE PC12133, Quantum Technologies 2022, PC121330R (3 June 2022); https://doi.org/10.1117/12.2631336
Advertisement
Advertisement
Back to Top