PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This PDF file contains the front matter associated with SPIE Proceedings Volume 10492 including the Title Page, Copyright information, Table of Contents, Introduction, and Conference Committee listing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Preserving the integrity of DNA is fundamental for cell survival. Therefore, DNA repair research has a high demand for methods to induce DNA damage with high spatial and temporal selectivity. To apply and study the effects of fs-laser irradiation in live cells, we have developed a multicolor fs-laser system. This turnkey system is based on single-mode fs-Er: and Yb:fiber laser technology. It synchronously provides pulses at 515 nm, 775 nm and 1035 nm wavelength with 40 MHz repetition rate. All three branches feature closely matched, bandwidth-limited pulse durations between 80 and 95 fs in the focus of a commercial laser-scanning microscope. An average optical output power from 80 to 2000 mW in the corresponding branches is provided. We apply a tandem scanning scheme in order to decouple nonlinear photomanipulation from conventional imaging.
We extensively analyzed the induction of DNA damage upon fs-laser irradiation via immunocytochemistry. A set of irradiation working conditions at 515 nm and 1035 nm has been identified that specifically induce either DNA strand breaks or UV-photoproducts. In subsequent live-cell experiments, we observed the generation of secondary breaks due to the activation of nucleotide-excision-repair at 515 nm wavelength irradiation. Such secondary reactions escape detection by conventional immunocytochemistry, but are revealed by our approach. Furthermore, we identified working conditions of irradiation at 775 nm driving two-photon-photoactivation of fluorescently labelled proteins within the nucleus without simultaneously triggering unwanted DNA lesions. We can therefore study the mobility of e.g. chromatin proteins at sites of DNA damage or perform functional cellular studies of mutant DNA repair proteins
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In recent years, two-photon polymerization (2PP) has emerged as a promising technology to structure customized biomaterials in regenerative medicine. Based on nonlinear absorption phenomena, 2PP allows rapid and flexible fabrication of fully three dimensional (3D) objects with sub-100-nm resolution.
The ever-growing need for biocompatible photoinitiators (PI) necessitates knowledge of the spectral two-photon absorption (2PA) characteristics. Matching the laser wavelength to the peak of the 2PA spectrum of a particular compound can result in a significant increase of the PI’s performance. With the advent of tunable femtosecond laser systems the application window of 2PP has vastly expanded due to the broad spectral range available for structuring.
To reveal the potential of a certain PI design the z-scan technique has become a standard method to measure the non-linear properties. We have developed a completely automated z-scan setup, which requires negligible user input for the characterization. It is based on the same system used for 2PP, which allows direct comparison of the PI absorption and the polymerisation performance.
To ensure reproducibility and accuracy of measurements, our group developed an automated algorithm, which collects the required laser parameters before the scanning process. These are stored in a comprehensive library for every single measurement. Therefore, even large amounts of data are easily handled and correctly evaluated without the need to manually check each measurement.
Our setup allowed us to reliably determine the absorption properties of newly synthesized PIs and adjust the structuring wavelength. The change in wavelength resulted in significant improvement of the structuring process.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Ultrafast lasers have become a fixture in many biomedical, industrial, telecommunications, and defense applications in recent years. These sources are capable of generating extremely high peak power that can cause laser-induced tissue breakdown through the formation of a plasma upon exposure. Despite the increasing prevalence of such lasers, current safety standards (ANSI Z136.1-2014) do not include maximum permissible exposure (MPE) values for the cornea with pulse durations less than one nanosecond. This study was designed to measure damage thresholds in corneal tissue phantoms in the near-infrared and mid-infrared to identify the wavelength dependence of laser damage thresholds from 1200-2500 nm. A high-energy regenerative amplifier and optical parametric amplifier outputting ~100 femtosecond pulses with pulse energies up to 2 mJ were used to perform exposures and determine damage thresholds in transparent collagen gel tissue phantoms. Three-dimensional imaging, primarily optical coherence tomography, was used to evaluate tissue phantoms following exposure to determine ablation characteristics at the surface and within the bulk material. The determination of laser damage thresholds in the near-IR and mid-IR for ultrafast lasers will help to guide safety standards and establish the appropriate MPE levels for exposure sensitive ocular tissue such as the cornea. These data will help promote the safe use of ultrafast lasers for a wide range of applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In tissue engineering research, stem cells have been used as starting material in the synthesis of mammalian cells for the treatment of various cell based diseases. This is done by manipulating the DNA content of the cells to induce a specific effect such as increased proliferation or developing a new cell type through the process of differentiation. Such controlled gene expression of stem cells is achieved by the method of transfection, where exogenous plasmid deoxyribonucleic acid (pDNA) is inserted into a stem cell using chemical, viral or physical methods. In this research, we used femtosecond (fs) laser pulses from a home-build microscope system to perforate the cellular membrane and allow entry of selected pDNA to alter the behaviour of mouse embryonic stem cells (mESCs). In one set of experiments, we induce fluorescence on mESCs using green fluorescence protein plasmid (pGFP) while in other tests; differentiation of mESCs into endoderm cells is performed using Sox-17 plasmid DNA (pSox-17). Primitive endoderm formation was thereafter confirmed using polymerase chain reactions (PCR) and the Sox-17 primer. Cell viability studies using adenosine triphosphate were also conducted. From the data, it was concluded that the photo-transfection method is biocompatible since it was able to induce fluorescence in mESCs. Secondly, it was confirmed that Sox-17 was photo-transfected successfully using 6 μW laser power, 128 fs pulses and 1kHz pulse repetition rate.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In recent years, several commercial systems relying on picosecond pulses have been introduced into the field of cutaneous interventions. In parallel with this development, a somewhat distinct research prototype also operating in the picosecond regime was described in literature. Albeit both market-available products and the investigational device employ laser beams of nearly the same pulse duration and were reported to cause laser-induced optical breakdown (LIOB), they are different in terms of wavelength, applied fluence, laser beam quality, optical architecture and related focusing optics, resulting in different histomorphological features (such as e.g. lesion size, location, expression of collagen). Understanding the differences between these systems in relation to implications for clinical results raises a need in highlighting the nuances behind interaction of picosecond pulses with biological tissue. To achieve this, we accentuate the interplay of irradiance levels of picosecond pulses in W/cm2 , absorption properties of a target tissue at a wavelength of a light source and resulting interaction mechanisms with biological object. We also relate these nuances to potential consequences for cutaneous interventions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Pulsed high-energy lasers operating in the near-infrared (NIR) band are increasingly being used in medical, industrial, and military applications, but there are little available experimental data to characterize their hazardous effects on skin tissue. The current American National Standard for the Safe Use of Lasers (ANSI Z136.1-2014) defines the maximum permissible exposure (MPE) on the skin as either a single-pulse or total exposure time limit. This study determined the minimum visible lesion (MVL) damage thresholds in Yucatan miniature pig skin for the single-pulse case and several multiple-pulse cases over a wide range of pulse repetition frequencies (PRFs) (10, 125, 2,000, and 10,000 Hz) utilizing nanosecond-scale pulses (10 or 60 ns). The thresholds are expressed in terms of the median effective dose (ED50) based on varying individual pulse energy with other laser parameters held constant. The results confirm a decrease in MVL threshold as PRF increases for exposures with a constant number of pulses, while also noting a PRF-dependent change in the threshold as a function of the number of pulses. Furthermore, this study highlights a change in damage mechanism to the skin from melanin-mediated photomechanical events at high irradiance levels and few numbers of pulses to bulk tissue photothermal additivity at lower irradiance levels and greater numbers of pulses. The observed trends exceeded the existing exposure limits by an average factor of 9.1 in the photothermally-damaged cases and 3.6 in the photomechanicallydamaged cases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We have developed a safe, noninvasive imaging-guided localized antivascular method, namely photo-mediated ultrasound therapy (PUT), by applying synchronized laser and ultrasound pulses. Through our experimental and theoretical studies, we demonstrate that cavitation plays a key role in PUT. PUT promotes cavitation activity in blood vessels by concurrently applying ultrasound bursts and nanosecond laser pulses. The collapse of cavitation can induce damage to blood vessel endothelial cells, resulting in occlusion of microvessels. This study presents the effect of laser pulse energy, laser pulse length, ultrasound intensity, and synchronization time between laser and ultrasound. We found that, in order to produce controllable blood vessel occlusion, linear oscillation of cavitation (or non-inertial cavitation) might be the key, while strong collapse of cavitation (inertial cavitation) might induce bleeding. Under the guidance an optical coherence tomography (OCT) system, we utilized PUT to remove microvessels in the rabbit choroid. We were able to monitor cavitation activity in real-time in vivo during PUT treatment, and predict treatment outcome. Histology findings confirmed that fibrin clots were developed in the microvessels in the treated region, while no damage was found in the surrounding tissue.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The biological applicability of the Erbium-doped Yttrium Aluminum Garnet (Er:YAG) laser in surgical processes is so far limited to hard dental tissues. Using the Er:YAG laser for bone ablation is being studied since it has shown good performance for ablating dental hard tissues at the wavelength 2.94 μm, which coincides with the absorption peak of water, one of the main components of hard tissue, like teeth and bone. To obtain a decent performance of the laser in the cutting process, we aim at examining the influence of sequenced water jet irrigation on both, the ablation rate and the prevention of carbonization while performing laser ablation of bone with fixed laser parameters. An Er:YAG laser at 2.94 μm wavelength, 940 mJ energy per pulse, 400 μs pulse width, and 10 Hz repetition rate is used for the ablation of a porcine femur bone under different pulsed water jet irrigation conditions. We used micro-computed tomography (micro-CT) scans to determine the geometry of the ablated areas. In addition, scanning electron microscopy (SEM) is used for qualitative observations for the presence of carbonization and micro-fractures on the ablated surfaces. We evaluate the performance of the laser ablation process for the different water jet conditions in terms of the ablation rate, quantified by the ablated volume per second and the ablation efficiency, calculated as the ablated volume per pulse energy. We provide an optimized system for laser ablation which delivers the appropriate amount of water to the bone and consequently, the bone is ablated in the most efficient way possible without carbonization.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Since the increase in the overall mortality rate in patients with colon cancer is remarkably high in recent years, early treatment is required. For this reason, endoscopic submucosal dissection (ESD) has been at the forefront of international attention as a low invasive treatment for early digestive cancer. In current ESD procedure, an electrosurgical knife is used for mucosal incision and subsequent submucosal dissection. However, the perforation has been reported to occur by approximately 5%. Thus, to enhance the tissue selectivity of this modality, we focused on the application of laser for ESD. A carbon dioxide laser was chosen as a surgical knife because the saline or a sodium hyaluronate solution injected into the submucosal layer in current ESD procedure has a high absorption coefficient at the wavelength of the carbon dioxide laser. In this research, ex vivo experiment was performed at the output power of 3–7 W and discuss the optimum irradiation power of laser. As a result of ex vivo experiment using extracted porcine colon tissues, mucosal incision and submucosal dissection were safely and less invasively performed in every output power, without reaching the thermal damage to a muscular layer. This is because a carbon dioxide laser is strongly absorbed by saline injected into submucosa. ESD using a carbon dioxide laser is a safer method for the treatment of early colon cancer. We are planning to measure and compare the optical and thermal properties of porcine colon with those of human colon.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The time for electrical conduction blockade induced by a photodynamic reaction was studied on a myocardial cell wire in vitro and an in silico simulation model was constructed to understand the necessary time for electrical conduction blockade for the wire. Vulnerable state of the cells on a laser interaction would be an unstable and undesirable state since the cells might progress to completely damaged or repaired to change significantly therapeutic effect. So that in silico model, which can calculate the vulnerable cell state, is needed. Understanding an immediate electrical conduction blockade is needed for our proposed new methodology for tachyarrhythmia catheter ablation applying a photodynamic reaction. We studied the electrical conduction blockade occurrence on the electrical conduction wire made of cultured myocardial cells in a line shape and constructed in silico model based on this experimental data. The intracellular Ca2+ ion concentrations were obtained using Fluo-4 AM dye under a confocal laser microscope. A cross-correlation function was used for the electrical conduction blockade judgment. The photodynamic reaction was performed under the confocal microscopy with 3-120 mW/cm2 in irradiance by the diode laser with 663 nm in wavelength. We obtained that the time for the electrical conduction blockade decreased with the irradiance increasing. We constructed a simulation model composed of three states; living cells, vulnerable cells, and blocked cells, using the obtained experimental data and we found the rate constant by an optimization using a conjugate gradient method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
We successfully induced intracellular ion concentration changes in live culture cells using mid-infrared laser irradiation. The laser used for irradiation was a quantum cascade laser with a wavelength of 6.1 micrometers. We tuned the power of the laser to be between 30 to 60 mW at the sample. Cell lines, namely HeLa and Chinese hamster ovary cell lines, were used. They were cultured on specially fabricated silicon-bottom dishes. Live cells were stained using ion-sensitive dyes such as Calcium Green-1. The mid-infrared light was incident on the cell samples from the bottom of the dish through the silicon plate, and fluorescence imaging of the ion concentrations was performed using an upright fluorescence microscope placed on top of the sample stage. The mid-infrared lasers were operated in the continuous wave mode and light irradiations onto the cells were temporally controlled using a mechanical shutter in a periodical on-and-off pattern in the second timescale. The cells showed oscillations in their ionic concentration, which was synchronized with the periodical mid-infrared irradiation, and the threshold power needed for evoking the ion concentration change was dependent on the cell types and ion species. These results demonstrated that mid-infrared light directly changed the ionic response within cells and had the ability to change cell functions.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Recently, some studies have demonstrated that the sweat ducts present in the skin play a significant role in terahertz (THz) wave interaction with human beings. It was reported that the sweat ducts act as a low-Q-factor helical antenna due to their helical structure, and resonate in the sub-terahertz frequency range according to their structural parameters, such as helix diameter and helix length. According to the antenna theory, a helical antenna resonates in two different modes of operation known as normal mode and axial mode and the dimension of the helix plays a key role to determine the frequency of resonance. Therefore, here we performed the optical coherence tomography (OCT) of number of human subjects on their palm and foot to investigate the density, distribution and morphological features of sweat ducts. Moreover, we calculated the dielectric properties of human skin using terahertz time domain spectroscopy. Based on the structural parameters of human sweat ducts and its THz dielectric properties of surrounding medium, we computed the frequency of resonance of sweat duct in different modes of operation and we found that these ducts resonate in subterahertz frequency region. We believe that these findings will facilitate further investigation of the THz-skin interaction and provide guidelines for safety levels with respect to human exposure to electromagnetic waves at these frequencies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
To investigate hemolysis phenomena during a photosensitization reaction with the reaction condition continuously and simultaneously for a safety assessment of hemolysis side effect, we constructed an optical system to measure blood sample absorption spectrum during the reaction. Hemolysis degree might be under estimated in general evaluation methods because there is a constant oxygen pressure assumption in spite of oxygen depression take place. By investigating hemoglobin oxidation and oxygen desorption dynamics obtained from the contribution of the visible absorption spectrum and multiple regression analysis, both the hemolysis phenomena and its oxygen environment might be obtained with time. A 664 nm wavelength laser beam for the reaction excitation and 475-650 nm light beam for measuring the absorbance spectrum were arranged perpendicularly crossing. A quartz glass cuvette with 1×10 mm in dimensions for the spectrum measurement was located at this crossing point. A red blood cells suspension medium was arranged with low hematocrit containing 30 μg/ml talaporfin sodium. This medium was irradiated up to 40 J/cm2 . The met-hemoglobin, oxygenatedhemoglobin, and deoxygenated-hemoglobin concentrations were calculated by a multiple regression analysis from the measured spectra. We confirmed the met-hemoglobin concentration increased and oxygen saturation decreased with the irradiation time, which seems to indicate the hemolysis progression and oxygen consumption, respectively. By using our measuring system, the hemolysis progression seems to be obtained with oxygen environment information.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The application of biotechnology is increasing in areas such as agriculture, biochemistry or biomedicine. Growing bacteria or algae could be beneficial for supplying fuel, drugs, food or oxygen, among other products. An adequate knowledge of biological processes is becoming essential to estimate and control products production. Cyanobacteria are particularly appropriate for producing oxygen and biomass, by consuming mainly carbon dioxide and light irradiation. These capacities could be employed to provide human subsistence in adverse environments, as basic breathing and food needs would be satisfied. Cyanobacteria growing is carried out in bioreactors. As light irradiation is quite relevant for their behavior, photobioreactors are needed. Photobioreactors are designed to supply and control the amounts of elements they need, in order to maximize growth. The adequate design of photobioreactors greatly influences production throughput. This design includes, on the optical side, optical illumination and optical measurement of cyanobacteria growth. The influence of optical scattering is fundamental for maximizing cyanobacteria growing, as long as for adequately measure this growth. In this work, optical scattering in cyanobacteria suspensions is analyzed. Optical properties of cyanobacteria and its relationship with concentration is taken into account. Several types of cyanobacteria are considered. The influence of different beam spatial profiles and irradiances is studied by a Monte Carlo approach. The results would allow the consideration of the influence of optical scattering in the detected optical signal employed for growth monitoring, as a function of cyanobacteria type and optical beam parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Cherenkov light is created in clinical applications involving high-energy radiation such as in radiation therapy. Due to improvements in camera sensitivity, we are now able to detect and measure Cherenkov light created during radiation therapy using linear accelerators (linacs). However, no method currently exists for using Cherenkov light to estimate the absolute radiation dose delivered to irradiated tissues. We have developed a technique to perform dosimetry with images of Cherenkov emission using deconvolution imaging techniques. The deconvolution technique relies upon the Cherenkov Scatter Function (CSF), a function that describes the scattering of Cherenkov light as it is generated by the treatment photons and propagated through tissue to the surface of the skin. In this study, the CSF was generated through Monte Carlo for 6 MV, 10 MV, and 18 MV photon beams in light, medium, dark skin, and optical tissue phantom materials. Functional dependence of on incident treatment beam angle is shown. The CSFs generated are parameterized using a double-Gaussian distribution and fit coefficients are given. Basic formulation of the deconvolution imaging equation is given to show the relationship of the CSF to x-ray beam flux.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The creation of stable test phantoms that mimic the scattering characteristics of biological tissue is important for characterizing different Optical imaging methods through biological tissue. Unfortunately utilizing organic materials as tissue test structures pose problems in biomedical imaging research; tissues tend to have short lifetime, change their scattering and other optical characteristics rapidly with time, and are difficult to uses as reliable standards for comparing calibrating imaging systems. To solve these problems ongoing work has shown it is technically possible to create long term stable phantoms which can last for up to 5 years while maintaining consistent optical characteristics which mimic skin characteristics. These long term test phantom is created by encapsulating an intralipid-infused agar layer within clear polymer. Varying the intralipid concentration allows control of the scattering parameters with typical values of µs = 20cm-1, g = 0.95. The phantoms can be created in a wide range of thicknesses and shapes. To characterize these we developed a technique using a digitial camera to capture, in a single measurement, the scattered light from laser beams passing through the test phantoms. Analysis of the image allows hundreds of measurements of scattering values at a wide range of angles using a Matlab program to identify the scattering center and the angular positions. We fitted this to scattering models to extract the µs and g parameters for each test phantom Consistent results were obtained using a Henyey-Greenstein two-term model, probably because the Agar and intralipid impacted the scattering separately.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Broadband fiberoptic spectroscopy is investigated for diagnostic applications, based on its ability to noninvasively determine tissue scattering and absorption properties. Spectroscopic instrumentation requires a calibration to account for wavelength dependent factors that may vary, such as the output of the light source, fiberoptic coupling efficiency, ambient light, fiber transmission and detector sensitivity. For techniques such as Diffuse Reflectance Spectroscopy (DRS), a relative calibration of the reflectance is sufficient. For Single Fiber Reflectance spectroscopy (SFR), however, the measured absolute reflectance, R is related to the sample optical properties. Consequently, in order to extract tissue optical properties using SFR, an absolute calibration of the reflectance is required. We investigated two novel SFR calibration methods, using a calibrated mirror and using the Fresnel reflection at the measurement fiber tip as a reference. We compared these to commonly used calibration methods, using either Intralipid-20% in combination with Monte Carlo simulations or Spectralon as a reference. The Fresnel reflection method demonstrated the best reproducibility and yielded the most reliable result. We therefore recommend the Fresnel reflection method for the absolute reflectance calibration of SFR.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
To avoid an instability of the optical coefficient measurement using sliced tissue preparation, we proposed the combination of light intensity measurement through an optical fiber puncturing into a bulk tissue varying field of view (FOV) and ray tracing calculation using Monte-Carlo method. The optical coefficients of myocardium such as absorption coefficient μa, scattering coefficient μs, and anisotropic parameter g are used in the myocardium optical propagation. Since optical coefficients obtained using thin sliced tissue could be instable because they are affected by dehydration and intracellular fluid effusion on the sample surface, variety of coefficients have been reported over individual optical differences of living samples.
The proposed method which combined the experiment using the bulk tissue with ray tracing calculation were performed. In this method, a 200 μmΦ high-NA silica fiber installed in a 21G needle was punctured up to the bottom of the myocardial bulk tissue over 3 cm in thickness to measure light intensity changing the fiber-tip depth and FOV. We found that the measured attenuation coefficients decreased as the FOV increased. The ray trace calculation represented the same FOV dependence in above mentioned experimental result. We think our particular fiber punctured measurement using bulk tissue varying FOV with Inverse Monte-Carlo method might be useful to obtain the optical coefficients to avoid sample preparation instabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Timely estimation of optical properties from spatially resolved reflectance is a challenging task since the inverse light propagation model needs to be evaluated in real time. In this paper, we propose and extensively evaluate artificial neural network based regression model for estimation of optical and structural sample properties from spatially resolved reflectance acquired by optical fiber probes. We show that the proposed regression model can be prepared from datasets of Monte Carlo simulated spatially resolved reflectance and evaluated significantly faster than the frequently used dense lookup table inverse model. We observed computation time improvements exceeding 4 orders of magnitude. Moreover, the regression model can be easily extended to estimate more free parameters without reducing the estimation accuracy. Finally, we utilized the proposed regression model to estimate optical properties of human skin subjected to dynamically changing contact pressure applied by an optical fiber probe.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The Monte Carlo method is often referred as the gold standard to calculate the light propagation in turbid media. Especially for complex shaped geometries where no analytical solutions are available the Monte Carlo method becomes very important. In this work a Monte Carlo software is presented, to simulate the light propagation in complex shaped geometries. To improve the simulation time the code is based on OpenCL such that graphics cards from most vendors as well as all other computing devices can be used simultaneously. Within the software an illumination concept is presented to realize easily all kinds of light sources, like spatial frequency domain (SFD), optical fibers or Gaussian beam profiles. Moreover different objects, which are not connected to each other, can be considered simultaneously, without any additional preprocessing. A correct implementation of the Software has been proofed by comparison with well-known Monte Carlo packages like the MCML software or the MMC software package. Additionally speed comparison with these software packages are presented to demonstrate the strengths of the newly developed Monte Carlo software. Since the 3D objects are expressed by tetrahedra within the Monte Carlo software it can be used for many applications. The presented Monte Carlo software was utilized to calculate the transmission spectrum of a tooth as a clinical application. The results of the Monte Carlo software were used for the color reconstruction and prediction of different objects as an imaging function.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The incident field size and the interplay of absorption and scattering can influence the in-vivo light fluence rate distribution and complicate the absolute quantification of fluorophore concentration in-vivo. In this study, we use Monte Carlo simulations to evaluate the effect of incident beam radius and optical properties to the fluorescence signal collected by isotropic detector placed on the tissue surface. The optical properties at the excitation and emission wavelengths are assumed to be identical. We compute correction factors to correct the fluorescence intensity for variations due to incident field size and optical properties. The correction factors are fitted to a 4-parameters empirical correction function and the changes in each parameter are compared for various beam radius over a range of physiologically relevant tissue optical properties (μa = 0.1 – 1 cm-1 , μs’= 5 – 40 cm-1 ).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Monte Carlo (MC) stimulation is one of the prominent simulation technique and is rapidly becoming the model of choice to study light-tissue interaction. Monte Carlo simulation for light transport in multi-layered tissue (MCML) is adapted and modelled with different geometry by integrating embedded objects of various shapes (i.e., sphere, cylinder, cuboid and ellipsoid) into the multi-layered structure. These geometries would be useful in providing a realistic tissue structure such as modelling for lymph nodes, tumors, blood vessels, head and other simulation medium. MC simulations were performed on various geometric medium. Simulation of MCML with embedded object (MCML-EO) was improvised for propagation of the photon in the defined medium with Raman scattering. The location of Raman photon generation is recorded. Simulations were experimented on a modelled breast tissue with tumor (spherical and ellipsoidal) and blood vessels (cylindrical). Results were presented in both A-line and B-line scans for embedded objects to determine spatial location where Raman photons were generated. Studies were done for different Raman probabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Dermatologic patients have various skin characteristics such as skin tone and pigmentation color. However most studies on laser ablation and treatment only considered laser operating conditions like wavelength, output power and pulse duration. The laser ablation arises from photothermal effect by photon energy absorption. Chromophores like melanin exist as the absorber in the skin. In this study, we painted color to mimic chromophores on in-vivo and in-vitro skin models to demonstrate influence on the laser ablation by skin color. Water-based pens were used to paint color. Cross sectional images of the laser ablation were acquired by Fourier-domain optical coherence tomography (Fd-OCT). Light source to make ablation was a Q-switch diode-pumped Nd:YVO4 nanosecond laser (532nm central wavelength). Irradiated light energy dose of the laser could not make ablation craters in the control group. However experimental groups showed craters with same irradiation light energy dose. These results show painting on skin increased tissue damage by absorption in painted color without dyeing cells or tissues.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Objective: to identify the best low intensity laser photobiomodulation application site to increase the viability of the cutaneous flap in rats. Methods: 18 male rats (Rattus norvegicus: var. Albinus, Rodentia Mammalia) were randomly distributed into 3 groups (n = 6). Group I (GI) was submitted to simulated laser photobiomodulation, group II (GII) was submitted to the laser photobiomodulation at three points in the flap cranial base, and group III (GIII) was submitted to laser photobiomodulation at twelve points distributed along the flap. All groups were irradiated with an Indium, Galium, Aluminum and Phosphorus diode laser (InGaAlP), 660 nm, with power of 50 mW, total energy of 12 J in continuous emission mode. The treatment started immediately after performing the cranial base random skin flap (dimension of 10X4 cm2 ) and reapplied every 24 hours, with a total of 5 applications. The animals were euthanized after the evaluation of the percentage of necrosis area and the material was collected for histological analysis on the 7th postoperative day. Results: GII animals presented a statistically significant decrease for the necrosis area when compared to the other groups, and a statistically significant increase in the quantification of collagen when compared to the control. We did not observe a statistical difference between the TGFβ and FGF expression in the different groups evaluated. Conclusion: the application of laser photobiomodulation at three points of the flap cranial base was more effective than at twelve points regarding the reduction of necrosis area.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Various illumination geometries are being used in push-broom hyperspectral systems (PB-HSI), where a specific choice of the geometry might affect the imaging results, especially when imaging turbid samples. In this study, the effect of the illumination line width on the reflected radiance is explored. Since the PB-HSI images a very narrow line on the sample, the hypothesis is that by varying the illumination line width tissue optical parameters can be assessed because of their effects on mean free transport path in the tissue. A numerical simulation of light propagation within tissue samples was performed by a 3D CUDA Monte Carlo (MC). A custom MC allowing various illumination geometries and different scattering phase functions was developed. Sets of realistic tissue optical properties, including different scattering phase functions, are used to simulate a bulk tissue. For each set of optical properties, reflectances are computed for illumination line widths varying between 0.1 to 20 mm in the 400–1000 nm spectral range. A prominent effect of the line width on the reflected fraction of photons in correlation with the optical properties was found. This study results demonstrated that the illumination geometry, namely the illumination line width, significantly affects the PB-HSI images of turbid samples. Thus, the geometry should be considered when performing the imaging and analyzing the obtained images. In addition, by varying the illumination line width during the imaging, scattering anisotropy of a sample and other optical properties could be assessed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A solid-phase photosensitizer based on aggregated C60 fullerene and graphene oxide for photodynamic inactivation of pathogens in biological fluids was studied. The most promising technologies of inactivation include the photodynamic effect, which consists in the inactivation of infectious agents by active oxygen forms (including singlet oxygen), formed when light is activated by the photosensitizer introduced into the plasma. Research shows features of solid-phase systems based on graphene and fullerene C60 oxide, which is a combination of an effective inactivating pathogens (for example, influenza viruses) reactive oxygen species formed upon irradiation of the photosensitizer in aqueous and biological fluids, a high photostability fullerene coatings and the possibility of full recovery photosensitizer from the biological environment after the photodynamic action.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
The propagation of waves in turbid media is a fundamental problem of optics with vast applications. Optical phase optimization approaches for focusing light through turbid media using phase control algorithm have been widely studied in recent years due to the rapid development of spatial light modulator. The existing approaches include element-based algorithms - stepwise sequential algorithm, continuous sequential algorithm and whole element optimization approaches - partitioning algorithm, transmission matrix approach and genetic algorithm. The advantage of element-based approaches is that the phase contribution of each element is very clear; however, because the intensity contribution of each element to the focal point is small especially for the case of large number of elements, the determination of the optimal phase for a single element would be difficult. In other words, the signal to noise ratio of the measurement is weak, leading to possibly local maximal during the optimization. As for whole element optimization approaches, all elements are employed for the optimization. Of course, signal to noise ratio during the optimization is improved. However, because more random processings are introduced into the processing, optimizations take more time to converge than the single element based approaches. Based on the advantages of both single element based approaches and whole element optimization approaches, we propose FEDA approach. Comparisons with the existing approaches show that FEDA only takes one third of measurement time to reach the optimization, which means that FEDA is promising in practical application such as for deep tissue imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Two-photon microscopy is a powerful tool of current scientific research, allowing optical visualization of structures below the surface of tissues. This is of particular value in neuroscience, where optically accessing regions within the brain is critical for the continued advancement in understanding of neural circuits. However, two-photon imaging at significant depths have typically used Ti:Sapphire based amplifiers that are prohibitively expensive and bulky. In this study, we demonstrate deep tissue two-photon imaging using a compact, inexpensive, turnkey operated Ytterbium fiber laser (Y-Fi, KM Labs). The laser is based on all-normal dispersion (ANDi) that provides short pulse durations and high pulse energies. Depth measurements obtained in ex vivo mouse cortex exceed those obtainable with standard two-photon microscopes using Ti:Sapphire lasers. In addition to demonstrating the capability of deep-tissue imaging in the brain, we investigated imaging depth in highly-scattering white matter with measurements in sciatic nerve showing limited optical penetration of heavily myelinated nerve tissue relative to grey matter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.