Si-based photonic integrated circuit is developing rapidly and has been widely used, such as optical communication, optical neural network, lidar and so on. However, Si has strong optical nonlinear effects, which limits the maximum transmitting optical power. It needs numbers of semiconductor optical amplifiers to expand the scale of the photonic integrated circuit because of the limited input optical power, which increases the complexity and cost of the Si-based photonic integrated circuits. Therefore, with much lower the waveguide loss and optical nonlinear effects than Si, SiN waveguide is able to transmit higher optical power and has received a lot of research. In this paper, a grating coupler based on SiN-Si dual-layer structure is proposed. It is composed of a layer of Si grating above the SiN waveguide layer. In the case of coupling from grating coupler to single-mode fiber, the minimum coupling loss is about -1.07 dB at 1563.5 nm, and the 1 dB bandwidth is over 100 nm. As to coupling from single-mode fiber to grating coupler, the minimum coupling loss is about -2.53 dB at 1553.4 nm, and the 1 dB bandwidth is about 65 nm. With the proposed grating coupler, it is able to effectively reduce the coupling loss between the single-mode fiber and the chip, increase the working bandwidth, and achieve higher input power. It is very helpful to reduce the complexity and cost of Si-based photonic integrated circuits, because of the reduced requirements for the number of semiconductor optical amplifiers. This will be useful in Si-SiN hybrid integration and SiN-based photonic integrated circuits.
|