Si-based photonic integrated circuit is developing rapidly and has been widely used, such as optical communication, optical neural network, lidar and so on. However, Si has strong optical nonlinear effects, which limits the maximum transmitting optical power. It needs numbers of semiconductor optical amplifiers to expand the scale of the photonic integrated circuit because of the limited input optical power, which increases the complexity and cost of the Si-based photonic integrated circuits. Therefore, with much lower the waveguide loss and optical nonlinear effects than Si, SiN waveguide is able to transmit higher optical power and has received a lot of research. In this paper, a grating coupler based on SiN-Si dual-layer structure is proposed. It is composed of a layer of Si grating above the SiN waveguide layer. In the case of coupling from grating coupler to single-mode fiber, the minimum coupling loss is about -1.07 dB at 1563.5 nm, and the 1 dB bandwidth is over 100 nm. As to coupling from single-mode fiber to grating coupler, the minimum coupling loss is about -2.53 dB at 1553.4 nm, and the 1 dB bandwidth is about 65 nm. With the proposed grating coupler, it is able to effectively reduce the coupling loss between the single-mode fiber and the chip, increase the working bandwidth, and achieve higher input power. It is very helpful to reduce the complexity and cost of Si-based photonic integrated circuits, because of the reduced requirements for the number of semiconductor optical amplifiers. This will be useful in Si-SiN hybrid integration and SiN-based photonic integrated circuits.
For constructing functional photonic integrated circuits, it is expected to incorporate an efficient and compact laser source into the complementary metal-oxide-semiconductor platform. Monolithic integration of III-V submicron lasers on patterned SOI substrates by means of the aspect ratio trapping method is a promising solution. Here, we have designed submicron lasers with reversed ridge waveguides on patterned Si/SOI substrates by three dimensional finite difference time domain simulation, effectively confining the light into the submicron lasers without removing the top Si layer. The reversed ridge waveguide structure can be formed by extending the III-V materials out of the SiO2 trench. The high-quality InP reversed ridge waveguide epitaxial structures have been obtained. The results of the simulations show that the optical leakage loss is reduced to the order of 10-2. This provides a new approach to develop the silicon-based submicron lasers emitting at the telecom bands.
We have designed electrically pumped sub-micron lasers on the SOI substrates, and proposed to incorporate InP tunnel junctions into sub-micron lasers to reduce carrier absorption loss. Numerical simulations show that the sub-micron laser is able to support a stable optical guide mode with a metal absorption loss of 2.13 dB/cm. And after doping, carrier absorption loss of the sub-micron laser without a tunnel junction is 11.67 dB/cm while carrier absorption loss of the sub-micron laser with InP tunnel junction is 6.72dB/cm. By incorporating InP tunnel junction, carrier absorption loss of the sub-micron laser is reduced by 42% so that a lower lasing threshold is obtained. The optimization of metal absorption loss and carrier absorption loss are of great significance for electrically pumped lasing, which promotes the realization of silicon-optical full integration
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.