PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
SPIE publishes accepted journal articles as soon as they are approved for publication. Journal issues are considered In Progress until all articles for an issue have been published. Articles published ahead of the completed issue are fully citable.
Selecting micro-electromechanical actuators with high force output, broad traveling ranges, and robust reliability becomes increasingly critical for active optical microsystem devices. We offer a comparative analysis of electrostatic comb actuators tailored for optical applications, focusing on evaluating performance for the demands of force density, traveling range, and footprint. Previous analyses often examined force generation in isolation, without a comprehensive assessment of these actuators’ footprint efficiency and practical traveling range. By integrating these parameters, we provide new insights into the suitability of various electrode designs for optical microsystems, thus offering a broader perspective on actuator selection. Our analysis particularly emphasizes silicon platforms with a dedicated microelectromechanical system layer, where optical waveguides are fabricated on top, resulting in enhanced mechanical stability and reliability. We delve into the implications of different configurations, considering the delicate balance between maximizing force, minimizing footprint, and maintaining operational travel range. Our findings reveal that actuators combining gap-closing and area-overlap mechanisms achieve superior performance by covering a larger range of force densities and traveling ranges with lower actuation voltages. This design excels in both small and large traveling ranges and is a strong candidate for photonic applications requiring high force and large traveling ranges within a compact footprint. In addition, we present a comprehensive map of the operational regimes for each actuator type, enabling a targeted selection based on the specific requirements of photonic applications. We aim to assist in microelectromechanical actuator designs for optical microsystems, empowering designers to make informed decisions for electrode configurations that meet the nuanced demands of specific optical microsystem applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
As semiconductor wafer process technology advances, there is a notable miniaturization of complementary metal-oxide-semiconductor transistors, allowing for a higher transistor density on the predominant 12-in. silicon wafers. Despite this trend, a significant number of applications remain tethered to legacy wafer sizes such as 8 in., 6 in., or even smaller. Economically packaging these devices presents a challenge. Furthermore, many of these applications necessitate that the active surface remains exposed to external environments, contrasting with conventional packaging methods that shield the active surface with epoxy molding compounds. Addressing these specialized needs, we introduce a “chip-first face-up wafer-level fan-out packaging.” This innovative approach ensures that the active surface remains outward-facing and accessible for intended interactions with the environment while concurrently enabling electrical connections from the chip to the board on the side opposite to the active surface through the meticulous combination of redistribution layers and through-silicon vias.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.