Liposomes, self-assembled lipid-based nanoparticles, have gained significant attention due to their versatility and potential applications in various biomedical fields. They serve as promising platforms for targeted drug delivery, imaging, and therapeutics. Among the various types of liposomes, radiolabeled liposomes have attracted considerable interest due to their unique capabilities in both therapy and imaging. In therapy, radiolabeled liposomes can effectively transport therapeutic radioactive agents directly to disease sites, allowing for precise and localized treatment. In imaging, radiolabeling enables non-invasive visualization and tracking of liposomes, providing valuable diagnostic information. In this study, we present a technique for surface radiolabeling of liposomes, achieved by introducing a chelating agent onto the liposome surface and optimizing radiolabeling conditions for desired radionuclides. Importantly, our technique allows for the radiolabeling process to be conducted after the liposomes have been formulated according to the desired composition, enabling seamless integration into biomedical research and clinical practice. Our research investigates optimal radiolabeling conditions for different isotopes, ensuring stability and high efficiency. Purification and characterization of the resulting radiolabeled liposomes validate their quality and stability. The findings of this study offer valuable insights for the future advancement and application of radiolabeled liposomes in biomedical research and clinical practice, holding promise for improved therapies and diagnostics.
Gold nanoparticles (GNPs) have garnered significant attention in biomedical applications, particularly as versatile platforms for drug delivery and targeted therapy. The conjugation of GNPs with antibodies offers a promising strategy to enhance their specificity and efficacy in various therapeutic approaches. In this study, we focus on synthesizing different types of GNPs conjugated with antibodies and investigate the influence of various synthesis methods on nanoparticle characterization. The results demonstrated that different synthesis methods lead to different degrees of antibody conjugation on the GNP surface and to varied efficiency on biosystems. This work has the potential to outline design principles that could positively affect the development of targeted nanotherapeutics for various biomedical applications.
Delivery of therapeutics to tumors is a major challenge, due to the sequence of formidable biological barriers in the body and tumor, which limit the penetration of various nano-carriers and drugs into the tumor. Exosomes are promising vectors for delivery of anti-tumor therapies, due to their biocompatibility, ability to evade clearance, and innate ability to home to, and interact with, target cells. However, promoting clinical application of exosome-based therapeutics requires elucidation of key issues, including exosome bio-distribution, tumor targeting, and the ability to overcome tumor barriers. Here, we examined these parameters using mesenchymal stem cell (MSCs)-derived exosomes loaded with gold nanoparticles (GNPs), aiming to delineate design principles for therapy loading and delivery. This novel technology provides essential and fundamental knowledge on exosomes for enhanced targeted drug delivery to tumors, and has potential to promote clinical translation of exosome-based cancer therapy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.