With the advent of powerful convolutional neural networks (CNNs), recent studies have extended early applications of neural networks to imaging tasks thus making CNNs a potential new tool for assessing medical image quality. Here, we compare a CNN to model observers in a search task for two possible signals (a simulated mass and a smaller simulated micro-calcification) embedded in filtered noise and single slices of Digital Breast Tomosynthesis (DBT) virtual phantoms. For the case of the filtered noise, we show how a CNN can approximate the ideal observer for a search task, achieving a statistical efficiency of 0.77 for the microcalcification and 0.78 for the mass. For search in single slices of DBT phantoms, we show that a Channelized Hotelling Observer (CHO) performance is affected detrimentally by false positives related to anatomic variations and results in detection accuracy below human observer performance. In contrast, the CNN learns to identify and discount the backgrounds, and achieves performance comparable to that of human observer and superior to model observers (Proportion Correct for the microcalcification: CNN = 0.96; Humans = 0.98; CHO = 0.84; Proportion Correct for the mass: CNN = 0.98; Humans = 0.83; CHO = 0.51). Together, our results provide an important evaluation of CNN methods by benchmarking their performance against human and model observers in complex search tasks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.