SignificanceCritically ill newborns are at risk of brain damage from cerebrovascular disturbances. A cerebral hemodynamic monitoring system would have the potential role to guide targeted intervention.AimTo obtain, in a population of newborn infants, simultaneous near-infrared spectroscopy (NIRS)-based estimates of cerebral tissue oxygen saturation (StO2) and blood flow during variations of carbon dioxide tension (pCO2) levels within physiologic values up to moderate permissive hypercapnia, and to examine if the derived estimate of metabolic rate of oxygen would stay constant, during the same variations.ApproachWe enrolled clinically stable mechanically ventilated newborns at postnatal age >24 h without brain abnormalities at ultrasound. StO2 and blood flow index were measured using a non-invasive device (BabyLux), which combine time-resolved NIRS and diffuse-correlation spectroscopy. The effect of changes in transcutaneous pCO2 on StO2, cerebral blood flow (CBF), and cerebral metabolic rate of oxygen index (tCMRO2i) were estimated.ResultsTen babies were enrolled and three were excluded. Median GA at enrollment was 39 weeks and median weight 2720 g. StO2 increased 0.58% (95% CI 0.55; 0.61, p < 0.001), CBF 2% (1.9; 2.3, p < 0.001), and tCMRO2 0.3% (0.05; 0.46, p = 0.017) per mmHg increase in pCO2.ConclusionsBabyLux device detected pCO2-induced changes in cerebral StO2 and CBF, as expected. The small statistically significant positive relationship between pCO2 and tCMRO2i variation is not considered clinically relevant and we are inclined to consider it as an artifact.
Anemia is a common problem in preterm neonates, and red blood cell transfusion (RBCT) is used to improve oxygen delivery. In order to limit the risk of possible complications new strategies to minimize the need for RBCTs are needed, as assessment of hemoglobin concentration in blood ([Hb]) alone appears to be an inadequate biomarker. In this study, we search for hemodynamic and metabolic thresholds to help define the need of RBCT in anemic newborns. The effect of RBCTs on cerebral tissue oxygen saturation (StO2) and blood flow (measured as Blood Flow Index, BFI) was estimated using a non-invasive hybrid diffuse optical device that combines Time Domain NIRS (TD-NIRS) and Diffuse Correlation Spectroscopy (DCS) techniques (BabyLux device). We enrolled 18 clinically stable neonates receiving RBCT at Neonatal Intensive Care Unit (NICU) of Ospedale Maggiore Policlinico in Milan. Tissue oxygen extraction (TOE) and the cerebral metabolic rate of oxygen consumption index (CMRO2I) were computed, the Wilkinson signed rank test for paired data was performed to compare data before and after RBCT. Preliminary results are in accordance with previous publications as regards cerebral oxygenation: a significant increase in StO2 (from 56.62 ± 5.20% to 63.85 ± 4.95%, p<0.05) and reduction in TOE (from 41.35 ± 5.9 % to 31.04 ±5.41%, p<0.05) were observed. The response in cerebral blood flow was smaller (only 10%) but also more variable, so conclusions regarding the effect of transfusion on cerebral oxygen metabolism are still uncertain.
We assessed the sensitivity of 1D and 2D homogeneous photon diffusion models for Time Domain NIRS in estimating preterm and term neonates’ cerebral hemodynamic parameters simulated by Monte Carlo methods on realistic 3D anatomical meshes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.