Surface-patterning technologies have enabled the improvement of currently existing light-emitting diodes (LEDs) and can be used to overcome the issue of low quantum efficiency of green GaN-based LEDs. We have applied nanosphere lithography to fabricate nanopillars on InGaN/GaN quantum-well LEDs. By etching through the active region, it is possible to improve both the light extraction efficiency and, in addition, the internal quantum efficiency through the effects of lattice strain relaxation. Nanopillars of different sizes are fabricated and analyzed using Raman spectroscopy. We have shown that nanopillar LEDs can be significantly improved by applying a combination of ion-damage curing techniques, including thermal and acidic treatment, and have analyzed their effects using x-ray photoelectron spectroscopy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.