The present study is focused on the development of advanced technology for creation of plasmonic composite nanostructures for Surface Enhanced Raman Spectroscopy (SERS) detection of ammonium nitrate. The investigation of the interaction of nanostructured composite objects with electromagnetic field, the description of their optical properties as well as determination of mechanisms and conditions for their effective modification brings the information for potential application as SERS substrates. The ZnO thin films are deposited by pulsed lased deposition (PLD) in an oxygen environment at high substrate temperature. The laser grown ZnO films are modified by Ag-ion implantation. The produced nanocomposites are subsequently laser annealed at different laser wavelengths. The influence of the ion implantation doses and the laser annealing parameters on the SERS activity of produced nanostructures is investigated. The observation of morphology of the samples demonstrates the influence of the laser annealing wavelength on the size distribution of embedded silver nanoparticles on the ZnO matrix. The plasmonic behaviour of embedded metal nanoparticles is determined by studying the optical properties of the fabricated structures. The proposed combined method for synthesis has potential application in fabrication of reliable substrates for Raman spectroscopy analysis with high sensitivity. The design of appropriate structures by laser and ion implantation methods can increase the efficiency of the high resolution analyses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.